Токсичность наноматериалов: доказательства и предположения

Информация - Разное

Другие материалы по предмету Разное

ать иммунный ответ из-за их незначительного размера.. Процессы переноса наночастиц в окружающей среде с воздушными и водными потоками, их накопление в почве, донных отложениях могут также значительно отличаться от поведения частиц веществ более крупного размера.

Рис. 8 - Нанопорошок ZnO.[1]

Высокая адсорбционная активность. Из-за своей высокоразвитой поверхности наночастицы обладают свойствами высокоэффективных адсорбентов, то есть способны поглощать на единицу своей массы во много раз больше адсорбируемых веществ, чем макроскопические дисперсии. Возможна, адсорбция на наночастицах различных контаминантов и облегчение их транспорта внутрь клетки, что резко увеличивает токсичность последних. Многие наноматериалы обладают гидрофобными свойствами или являются электрически заряженными, что усиливает как процессы адсорбции на них различных токсикантов, так и их способность проникать через барьеры организма.

Высокая способность к аккумуляции. Возможно, что из-за малого размера наночастицы могут не распознаваться защитными системами организма, не подвергаются биотрансформации и не выводятся из организма. Это ведет к накоплению наноматериалов в растительных, животных организмах, а также микроорганизмах, передаче по пищевой цепи, что, тем самым, увеличивает их поступление в организм человека.

Таким образом описанные выше факторы, подтверждают. Что наноматериалы обладают совершенно другими физико-химическими свойствами и могут быть токсичными, а так же подтверждают что токсичность возрастает с уменьшением размеров частиц. Таким образом, могут проявлять токсичность и наночастицы из материалов, не токсичных в обычной форме .

Появление новых материалов и технологий нередко несет с собой и новую угрозу здоровью человека и окружающей среде. Опасения относительно возможной токсичности наноматериалов, которые имеют весьма большую удельную поверхность, малые размеры, а значит, высокую химическую активность и высокую способность к проникновению в организм, заставили ученых заняться исследованиями их влияния на живую природу.[2, 3, 4, 5, 7]

6. Лабораторные исследования по токсичности наноматериалов.(In Vitro)

Исследования по токсичности наноматериалов и их влиянию на живую природу влияния в первую очередь проводились в лаборатория, так называемые исследования In Vitro, что в переводе с латинского означает - в пробирке, в искусственных условиях.

Одни из первых наночастиц с уникальными свойствами, известные ученым с давних пор являются металлические наночастицы и образуемые ими нанокластеры. Среди всех металлических наноматериалов следует выделить наночастицы золота и серебра.

Коллоидное золото.

Коллоидное золото известно еще с древности и использовалось в лечебных целях. С XX века золото стало применяться в изучении оптических и фрактальных свойств, механизмов агрегации и стабилизации коллоидов, биологии и медицине, физике и аналитической химии.

Учеными было доказано, что типы и способы модификации поверхности наночастиц золота оказывают воздействие на развитие токсического эффекта (in vitro), а также на функциональную активность макрофагов. Изучение токсичности наночастиц золота на эмбрионах показало, что эмбриотоксические свойства сильнее проявляются у наночастиц размером 0,8 нм, чем 1,5 нм. В тоже время тератогенный эффект характерен вне зависимости от их размера. [8]

Наночастицы серебра.

Наночастиц серебра размером 5-50 нм обладают сильной антибактериальной и цитотоксической активностью по отношению к гепатоцитам крыс. Механизм развития токсичности связан с окислительным стрессом, нарушением функций митохондрий и увеличением проницаемости мембраны. Однако , ингаляционное воздействие наночастицами серебра на крыс в концентрации 1,73?104 - 1,23?106 частиц/см3 в течение двадцати восьми дней не выявило значимых изменения в массе тела и больших отклонений от контрольной группы биохимических показателей периферической крови. Это соответствует требованиям американской конференции (ACGIH), установившей предельно допустимую концентрацию наночастиц серебра в воздухе - 2,16?106 частиц/см3. Токсичность наночастиц серебра зависит от используемых клеточных линий (in vitro) и включения наночастиц в дендримеры.[4, 7, 9]

Рис. 9 - Наблюдение наночастиц в цитратированном растворе шумерского серебра.

Наночастицы кадмия, хрома, меди, никеля и цинка.

Исследования токсичности наночастиц кадмия, хрома, меди, никеля и цинка на водной культуре дафний (Daphnia magna) показали, что медь и цинк проявляют похожую токсичность, которая усиливается при низком значениях pH (кислотно-щелочной среды). При этом добавление ЭДТА в среду снижало токсическое воздействие обоих меди и цинка, тогда как тиосульфат натрия снижал только токсическое воздействие меди. Проявление токсических свойств других металлов так же зависело от кислотно-щелочной среды.[4, 7]

Наночастицы титана.

Наиболее широко используемым в настоящее время , как в чистом виде, так и в составе наноматериалов оксид титана. Токсикологические исследования тонких (250 нм) и ультратонких (20 нм) TiO2 при ингаляционном введении крысам показали, что частицы размером 20 нм способны накапливаться в лимфоидных тканях , обладают повреждающим действием по отношению к ДНК лимфоцитов и клеток мозга. Основным механизмом токсического действия наночастиц оксида титана является индукция активных форм кислорода, причем реактивность зависит не тол