Токсичность наноматериалов: доказательства и предположения

Информация - Разное

Другие материалы по предмету Разное

?цы используются как составная часть солнцезащитных кремов; в сельском хозяйстве - для более эффективной доставки средств защиты растений и удобрений, для нанокапсулирования вакцин; предполагается использование наночастиц для доставки ДНК в растения в целях генной инженерии. В пищевой промышленности наноматериалы находят применение в фильтрах для очистки воды, при получении более легких, прочных, более термически устойчивых и обладающих антимикробным действием упаковочных материалов, при обогащении пищевых продуктов микронутриентами. Использование наночипов предполагается для идентификации условий и сроков хранения пищевой продукции и обнаружения патогенных микроорганизмов.

Большинство наноматериалов может обладать совершенно иными физико -химическими свойствами и биологическим действием. В связи с этим они относятся к материалам и продукции потенциального риска для здоровья человека и среды обитания наноматериалы могут. Частично поэтому наноматериалы широко не используются в медицине и других промышленных областях. Ниже будут показаны положительные и отрицательные стороны использования наноматериалов.[2, 3, 4, 5]

Рис. 4 - Одна из моделей наноробота, используемая в медицинских целях. К сожалению полностью функциональные нанороботы еще не изобретены.[3]

4. Положительная сторона использования наноматериалов

Рис. 5 - Кожный покров в разрезе. Красные точки видные на изображении - наночастицы размером 1 мкм. [3]

Использование наноматериалов в медицине позволяет проводить диагностику заболеваний на ранней стадии, в перспективе - на уровне единичных клеток. В качестве примера можно привести диагностику с помощью магнитных наночастиц. При введении в организм суспензии из таких частиц они захватываются макрофагами. Если где-то есть опухоль или протекает воспалительный процесс, меченые макрофаги устремляются туда и могут быть легко обнаружены с помощью магнитного томографа. Другим примером служат квантовые точки, обладающие, подобно атомам, дискретным спектром излучения. Обработанные определённым образом, они могут маркировать раковые клетки, что уже подтверждено экспериментами на мышах. Или же суспензию из зелёных квантовых точек можно вводить в сосуды для визуализации кровеносной системы. Если в каком-то месте повреждён маленький сосуд или капилляр, это будет отчётливо видно, поскольку в тканях человеческого организма нет зелёного цвета.

Рис. 6 - Наношестерни молекулярного размера.[3]

Наноматериалы позволили сделать адресную доставку лекарств более эффективной. В дальнейшей перспективе планируется реализовать доставку лекарств и генов к поражённым клеткам. Это намного повышает возможности лечения онкологических и некоторых других заболеваний сильнодействующими препаратами с ярко выраженными побочными действиями.

Использование наноматериалов в регенеративной медицине. Её цель - мобилизация собственных возможностей организма на борьбу с такими заболеваниями, как диабет, остеоартрит, поражения сердечной мышцы и центральной нервной системы. В основе регенеративной медицины лежит доставка к поражённым участкам тела биосовместимых материалов, стволовых клеток, а также сигнальных молекул, инициирующих регенеративные процессы на клеточном уровне.

Особые перспективы открывают нанотехнологии в области питания человека. Так в настоящие время уже массово производятся умные упаковки для пищевых продуктов, которые не только обеспечивают антимикробные свойства, баланс влажности и газопроницаемости, но и способны сигнализировать потребителям об истекшем сроке годности продука.

На основе нанотехнологий разрабатываются новые типы пищевых добавок позволяющих при соответствующий кулинарной обработки придавать продукту новые кулинарные свойства(цвет, аромат, вкус).[3,4,5,7]

5. Отрицательная сторона использования наноматериалов

Последствия воздействия наноматериалов на живые организмы изучено не до конца, но можно выделить некоторые допустимые и уже известные проблемы, которые могут возникнуть при попадании наночастиц в живой организм.

Рис. 7 - Сборка молекул ДНК.[3]

Увеличение химического потенциала веществ на межфазной границе высокой кривизны. Для макрочастиц (размерами порядка микрона и более) данный эффект незначителен (не более долей процента), но большая кривизна поверхности наночастиц и изменение топологии связи атомов на поверхности может привести к изменению их химических потенциалов. Вследствие этого существенно изменяется растворимость, реакционная и каталитическая способность наночастиц и их компонентов;

Большая удельная поверхность наноматериалов. Очень высокая удельная поверхность (в раiете на единицу массы) наноматериалов увеличивает их адсорбционную емкость, химическую реакционную способность и каталитические свойства. Это может приводить, в частности, к увеличению продукции свободных радикалов и активных форм кислорода и далее к повреждению биологических структур (липиды, белки, нуклеиновые кислоты, в частности, ДНК).

Небольшие размеры и разнообразие форм наночастиц. Наночастицы, вследствие своих небольших размеров, могут связываться с нуклеиновыми кислотами (вызывая, в частности, образование аддуктов ДНК), белками, встраиваться в мембраны, проникать в клеточные органеллы и, тем самым, изменять функции биоструктур. Так же наночастицы могут не вызыв