Схемотехника аналоговых электронных устройств
Методическое пособие - Радиоэлектроника
Другие методички по предмету Радиоэлектроника
й частотной области.
Эквивалентная схема каскада в области СЧ приведена на рисунке 2.13.
Как видно, эта схема не содержит реактивных элементов, т.к. в области СЧ влиянием на АЧХ разделительных () и блокировочных () емкостей уже можно пренебречь, а влияние инерционности БТ и еще незначительно.
Проведя анализ схемы, найдем, что
,
где ;
,
где ;
.
Эти соотношения получены в предположении, что низкочастотное значение внутренней проводимости транзистора много меньше и . Это условие (если не будет оговорено особо) будет действовать и при дальнейшем анализе усилительных каскадов на БТ. Такое допущение справедливо потому, что БТ является токовым прибором и особенно эффективен при работе на низкоомную нагрузку.
Эквивалентная схема каскада в области ВЧ приведена на рисунке 2.14.
Поведение АЧХ в этой области определяется влиянием инерционности транзистора и емкости .
Проведя анализ согласно методике раздела 2.4, получим выражение для коэффициента передачи каскада в области ВЧ:
,
где - постоянная времени каскада в области ВЧ.
Постоянную времени каскада для удобства анализа представим так:
,
где - постоянная времени транзистора (),
;
- постоянная времени выходной цепи транзистора,
;
- постоянная времени нагрузки,
.
Входную проводимость представим в виде:
,
где - входная динамическая емкость каскада,
.
Выходная проводимость определится как
,
где - выходная емкость каскада, .
Выражения для относительного коэффициента передачи и коэффициента частотных искажений в комментариях не нуждаются:
,
,
,
,
По приведенным выражениям строится АЧХ и ФЧХ каскада в области ВЧ.
Связь коэффициента частотных искажений и выражается как
.
В n-каскадном усилителе с одинаковыми каскадами наблюдается эффект сужения полосы рабочих частот, который можно скомпенсировать увеличением верхней граничной частоты каскадов до
.
Эквивалентная схема каскада в области НЧ приведена на рисунке 2.15.
Поведение АЧХ в этой области определяется влиянием разделительных () и блокировочных () емкостей.
Влияние этих емкостей на коэффициент частотных искажений в области НЧ каскада можно определить отдельно, используя принцип суперпозиции. Общий коэффициент частотных искажений в области НЧ определится как
,
где N - число цепей формирующих АЧХ в области НЧ.
Рассмотрим влияние на АЧХ каскада. Проведя анализ согласно методике раздела 2.4, получим выражение для коэффициента передачи в области НЧ:
,
где - постоянная времени разделительной цепи в области НЧ.
Постоянная времени разделительных цепей в общем случае может быть определена по формуле
,
где - эквивалентное сопротивление, стоящее слева от (обычно это выходное сопротивление предыдущего каскада или внутреннее сопротивление источника сигнала), - эквивалентное сопротивление, стоящее справа от (обычно это входное сопротивление следующего каскада или сопротивление нагрузки).
Для рассматриваемой цепи постоянная времени равна:
.
Выражения для относительного коэффициента передачи и коэффициента частотных искажений в области НЧ таковы:
,
,
,
,
и в комментариях не нуждаются. По этим выражениям оценивается влияние конкретной цепи на АЧХ и ФЧХ каскада в области НЧ.
Связь между коэффициентом частотных искажений и нижней граничной частотой выражается формулой
.
Аналогичным образом учитывается влияние других разделительных и блокировочных цепей, только для блокировочной эмиттерной цепи постоянная времени приблизительно оценивается величиной т.к. сопротивление БТ со стороны эмиттера приблизительно равно (см. подраздел 2.4.1), а влиянием в большинстве случаев можно пренебречь, т.к. обычно <<.
Результирующую АЧХ и ФЧХ каскада в области НЧ можно построить, используя уже упоминавшийся принцип суперпозиции.
В n-каскадном усилителе с одинаковыми каскадами наблюдается эффект сужения полосы рабочих частот, который в области НЧ можно скомпенсировать уменьшением нижней граничной частоты каскадов до .
2.6. Термостабилизация режима каскада на биполярном
транзисторе
Параметры БТ в значительной мере подвержены влиянию внешних факторов (температуры, радиации и др.). В то же время, одним из основных параметров усилительного каскада является его стабильность. Прежде всего, важно, чтобы в усилителе обеспечивался стабильный режим покоя.
Проанализируем вопрос влияния температуры на стабильность режима покоя БТ, конкретно - .
Существуют три основных фактора, влияющих на изменении под действием температуры: при увеличении температуры, во-первых, увеличивается напряжение , во-вторых, обратный ток коллекторного перехода , и, в третьих, возрастает коэффициент .
Для анализа реальный транзистор можно представить в виде идеального, у которого параметры не зависят от температуры, а температурную зависимость смоделировать включением внешних источников напряжения и тока (рисунок 2.16).
Рассмотрим влияние этих факторов на приращение тока коллектора . Начнем с влияния изменения , вызванного тепловым смещением проходных характеристик , обозначив при этом приращение тока коллектора как :
,
где - прира