Создание клиентских частей SQL БД под ОС Windows'95 и WindowsNT

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование



ных: неструктурированные тексты, пространственные данные, видеоданные. Собственно говоря, хранить такие данные в БД и осуществлять к ним доступ можно было и раньше: новизна в том, что если раньше этот доступ осуществлялся через самостоятельно работающие серверные процессы, и для работы с ними требовалось использование специального интерфейса на уровне приложений, то теперь данная функциональность интегрирована в "базовый" сервер.

Опция для работы с пространственными данными (Spatial Data Option) фактически вводит тип данных "пространственная точка" и операции над ним в СУБД, позволяя хранить соответствующие данные в таблицах оптиальным образом и на порядок (а порой и на два) ускорять выполнение запросов.

Что касается видеоданных, то соответствующая им опция - Video Option - единственная, "живущая самостоятельной жизнью" по отношению к серверу РСУБД (но не к БД). Более того, рекомендуется конфигурация, в которой Video Server запускается на отдельном компьютере от сервера БД. Связано это с тем, что воспроизведение видеофрагментов в реальном времени (особенно по нескольким каналам) - что как раз и обеспечивает Video Server - трудно совместимо на современных массово производимых компьютерах с функционированием сервера СУБД из-за чисто аппаратных ограничений. Тем не менее приложение, работающее с Video Server, может осуществлять поиск видеофрагментов по описательным атрибутам и воспроизведение этих фрагментов - как единую интегрированную операцию.

Относительно Web Option, пожалуй, не совсем правильно говорить о функциональных расширениях сервера, поскольку, в сущности, главная задача опции - обеспечение интерфейса с Web Application Server и соответственно через него с пользователями Intranet/Internet.

Oracle OLAP Option едва ли можно было рассматривать как интегрированную компоненту сервера Oracle (продукты OLAP работают с собственным - многомерным - представлением данных, хранимым отдельно) до недавнего времени, когда с помощью Access Manager появилась возможность устанавливать динамическую связь многомерного куба OLAP с реляционными данными, стирая тем самым грань между MOLAP и ROLAP (для аналитика, работающего с приложениями OLAP, стало совершенно незаметно, работает ли он с предварительно сформированным многомерным кубом или с динамическим многомерным представлением реляционных данных).

Развитие подхода в Oracle 8. В отличие от Oracle 7 восьмая версия сервера Oracle не просто предоставляет расширенный набор встроенных типов данных, но и позволяет конструировать новые типы данных со спецификацией методов доступа к ним. Это означает фактически, что разработчики получают в руки не просто систему для хранения и обработки, скажем, видеоданных (что, понятно, нужно далеко не в каждом приложении), а и инструмент, позволяющий строить структурированные типы данных, непосредственно отображающие сущности предметной области. "ияние этого фактора на возможности разработчиков можно сравнить с эффектом от перехода на реляционные СУБД в начале 80-х годов.

Oracle8 фактически опирается на новый стандарт SQL, позволяющий описывать определения новых типов объектов, состоящих из атрибутов (скалярных - т. е. других типов, множеств объектов, ссылок на объекты), и обладающих ассоциированными с ним методами. Любая колонка таблицы может быть любого типа, поддерживаются также вложенные таблицы и массивы объектов переменной длины.

Что касается методов доступа, то они могут быть определены несколькими способами. Более простой из них предполагает контроль ядра сервера за выполнением метода: это достигается, если методы реализуются на PL/SQL (который также расширен для поддержки объектно-реляционных структур) или Java. Поскольку PL/SQL практически не уступает по своей функциональности универсальным языкам программирования, для подавляющего большинства составных типов данных таких возможностей будет достаточно. Если же новый тип данных требует специальной обработки, не реализуемой стандартными средствами ядра СУБД (к примеру, работа с мультимедийными данными, хранимыми в BLOB-полях в БД), можно использовать вызовы внешних процедур (call-outs), которые могут быть написаны, допустим, на языке C.

При использовании внешних процедур возникает серьезная проблема организации их взаимодействия с ядром сервера. Наиболее соблазнительная - на первый взгляд - идея включения их непосредственно в ядро таит в себе угрозу нарушения стабильности этого ядра, поскольку оно оказывается незащищенным перед "чужим" кодом, и, следовательно, при любом сбое (или неправильном функционировании) становится практически невозможно определить, явилось ли это следствием ошибки в самом ядре, или же это "наведенный" эффект от внешней процедуры. Поэтому Oracle изначально отказался от такой идеи и реализует взаимодействие ядра сервера с внешними процедурами в защищенном режиме (т. е. в различных адресных пространствах). Для реализации такого взаимодействия и для доступа из внешних процедур к данным БД требуется наличие специального программного интерфейса. Oracle в данном вопросе пошел по пути поддержки имеющегося стандарта интерфейса Corba, позволяя оформлять расширения ядра сервера как "картриджи данных" (Data Cartridges), входящие в более общую архитектуру сетевых вычислений (Network Computing Architecture).

Для обеспечения постепенной миграции приложений и данных в новую объектно-реляционную среду введены объектные представления (object views), которые позволяют использовать в новых приложениях объектный интерфейс, работая при этом с обычными реляционными таблицами (т. о. с