Современная научная картина мира

Дипломная работа - Биология

Другие дипломы по предмету Биология

?х характеристик, выраженная принципом неопределённости Гейзенберга: точность измерения координат и импульсов системы не может быть выше постоянной Планка, минимального кванта действия.

Согласно этому положению никакой эксперимент не может привести к одновременно точному измерению координат и импульса частицы. Эта неопределённость связана не с несовершенством измерительной системы, а с объективными свойствами микромира. Если мы определяем точно координату частицы, то значение её импульса размывается и становится тем более неопределённым, чем точнее определяется координата. Поэтому в квантовой механике исчезает классическое понимание траектории частицы. В квантовой физике частицы двигаются по загадочным траекториям, простирающимся вдоль волноподобных путей. Одиночный электрон может быть везде в пределах волнового образца. К примеру, электрон может оставить фотографию своей траектории, но при этом может не иметь строгой траектории. В связи с рассмотрением траекторий атомных объектов удивительным представляется понимание траектории, предложенное Фейнманом. Согласно его модели, вероятность перемещения частицы из точки А в точку В равна сумме вероятностей её движения по всем возможным траекториям, соединяющим эти точки. Следовательно, квантовая теория разрешает частице находиться на любой траектории, соединяющей две точки, а поэтому невозможно точно сказать, где окажется частица в определенный момент.

Итак, если классическая физика считала неточность следствием несовершенства технологий и неполнотой человеческого знания, то квантовая теория говорит о принципиальной невозможности точных измерений на атомном уровне. Нильс Бор считал, что неопределённость есть не результат временного незнания, разрешимого при дальнейшем исследовании, но фундаментальный и неизбежный предел человеческого знания.

2.3 Принцип дополнительности

 

Нильс Бор предложил принцип дополнительности, согласно которому, мы не можем ничего сказать о квантовом мире, что бы было подобно действительности; взамен мы признаем достоверность альтернативных и взаимно исключающих методов. Представление об атомном мире, по сравнению с представлением Аристотеля (мир, как организм) и классической физикой (мир есть машина), не изобразимо. Классическая физика допускала, что существует объективный мир, который мы можно исследовать и измерять без существенного его изменения. Но на квантовом уровне оказывается невозможным исследовать реальность, не изменяя её. Это относится, например, к координате и импульсу. Знание положения частицы, - писал В.Гейзенберг, - дополнительно к знанию её скорости или импульса. Мы не можем определить дополнительную величину (напр. скорость) с точностью первой (координаты).

Обобщая этот принцип на живые организмы, Бор считал, что наше знание о том, что клетка живет, возможно, является чем-то дополнительным по отношению к полному знанию её молекулярной структуры. Если полное знание структуры клетки, которое может быть достигнуто лишь благодаря вмешательству, уничтожает жизнь клетки, то, заключает Бор, логически возможно, что жизнь исключает полное установление лежащих в ее основе физико-химических структур. На этом основании химические связи молекул являются дополнительными для физических законов, биологические - для химических, социальные - для биологических, социальные - для душевных, и т.д.

Таким образом, предложенный Бором принцип дополнительности разрушает позиции детерминизма, о чем более подробно будет сказано ниже.

2.4 Функция распределения вероятностей

 

Как мы уже отметили выше, все физические явления в квантовой механике описываются с помощью уравнения Шредингера. Это уравнение положено в основу квантовой механики и позволяет описать двойственную природу элементарных частиц.

Решения уравнения Шрёдингера называются волновыми ?-функциями. Через ?-функцию можно описать дифракцию электрона, интерференцию и другие волновые процессы. Она представляет амплитуду вероятности существования того или иного результата. Физический же смысл имеет квадрат модуля |?(x,y,z,t)|2. Квадрат модуля функции ? в любой точке пространства пропорционален вероятности того, что при наблюдении в данной точке в данный момент времени будет обнаружена частица. Это есть первый постулат квантовой механики.

Второй постулат утверждает, что функция распределения вероятностей эволюционирует во времени согласно уравнению Шрёдингера: если она определена в один момент времени, то тем самым она однозначно определена и во все последующие моменты времени с помощью уравнения Шрёдингера.

Для того, чтобы рассмотреть различные интерпретации квантовой теории, предварительно рассмотрим некоторые свойства волновой функции, которую далее мы будем называть вектором состояния.

Ненаблюдаемость. Вектор состояния является величиной ненаблюдаемой. Ни сам вектор, ни его возможная реализация не соответствуют чему-либо измеримому или чувственно воспринимаемому на опыте. Именно поэтому физический смысл имеет только квадрат модуля значения этой функции, т.е. усреднённое значение.

Целостность. Вектор состояния системы взаимодействующих частиц не может быть выражен через волновые функции отдельных частиц. Классическая физика определяет поведение системы через её части, а квантовая теория утверждает противоположное - целое определяет свойства своих частей: вектор с