Современная научная картина мира

Дипломная работа - Биология

Другие дипломы по предмету Биология

?ществование законов бытия мира: Бог созерцал все вещи прежде бытия их от вечности, …и каждая вещь получает бытие своё в опредёленное время, согласно с Его вечной, соединённой с хотением мыслью, которая есть предопределение, и образ, и план.

О планомерном постепенном характере возникновения мира говорит святитель Василий Великий: Они-то (разумные, мысленные твари), - наполняют собою сущность невидимого мира… А когда уже стало нужно присоединить к существующему и сей мир,… тогда произведено сродное миру и находящимся в нем животным и растениям преемство времени, всегда поспешающее и протекающее, и нигде не прерывающее своего течения.

Последним важным положением, которое мы желаем отметить, является то, что Бог является причиной мира. Причина возникновения мира кроется в бытии Бога, а не в самом мире. Мир не может быть причиной самого себя. Одной из причин, побудивших Бога на создание мира преп. Иоанн Дамаскин считает Его благость: Благий и преблагий Бог не удовольствовался созерцанием Себя Самого, но по преизбытку благости восхотел, чтобы произошло нечто, что в будущем пользовалось бы Его благодеяниями и было причастно Его благости. Однако, это не было необходимостью: Творение - свободный акт… Для Божественного существа оно не обусловлено никакой внутренней необходимостью. В силу этого богословие не может дать строгое определение причине мира. Неудивительно, что и наука подошла к такой же границе, за которой разрушаются все причинно-следственные связи мира.

2. Квантовая механика

 

Квантовая механика (волновая механика) - теория, устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем, а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми на опыте.

 

2.1 Развитие квантовых представлений о мире

 

Основы квантовой механики были заложены в начале XX века в связи с открытием двух универсальных постоянных - скорости света в вакууме и минимального действия - постоянной Планка.

Начало квантовым представлениям положил немецкий физик Макс Планк. В 1900г. он составил эмпирическую формулу распределения частотного спектра и сделал поразительное открытие: на атомном уровне энергия увеличивается или уменьшается на дискретное значение - квант (измеренная Планком константа или h). С этим открытием и введением постоянной Планка h …в физику внедрилась мысль, о том, что энергию механических систем нельзя задать произвольно. Она может принимать вполне определённую последовательность значений.

В 1905 г. Альберт Эйнштейн представил свою работу по специальной теории относительности. Он распространил понятие квантов Планка на электромагнитное излучение, т.е. свет. Эти кванты света Эйнштейна, обладающие свойствами частиц, были названы фотонами. Квантовые идеи вскоре были перенесены с излучения на атомные объекты. После этих событий в 1907 г. Эйнштейн построил простую квантовую модель теплоемкости материальных тел.

В 1911 г. Эрнестом Резерфордом была предложена планетарная модель атома. Хотя модель обладала достаточной простотой, и на первый взгляд была вполне приемлемой с точки зрения классической механики, однако с точки зрения электродинамики модель приводила к непреодолимым трудностям. Электрон, вращаясь вокруг ядра и излучая электромагнитные волны, должен был, в конце концов, упасть на ядро, и атом должен был перестать существовать. Только в 1913 году Нильс Бор спас положение: он допустил, что законы классической механики неверны, или, по крайней мере, неверны на атомном уровне. Им была предложена модель атома, игнорирующая требования классической физики: электроны перемещаются вокруг ядра по квантовым траекториям без какой либо потери энергии, получают или теряют энергию они только тогда, когда перескакивают с одной траектории на другую….

Боровские квантовые условия стали применять ко многим атомным явлениям. Но был один недостаток: квантовые условия накладывались сверху на классическую картину без понимания того, откуда берутся эти правила.

Другим направлением, по которому развивались квантовые представления о микромире, было изучение корпускулярно-волновой природы света. Исаак Ньютон считал свет потоком частиц, и эта модель хорошо объясняла опыт. В 1799 г. английский физик Томас Юнг (1773-1829) обнаружил явление интерференции, подтверждавшее волновую теорию света. Его теория была осмеяна, но спустя десять лет Юнга поддержал француз Огюстен Френель. Он самостоятельно провел опыты, подтверждающие интерференцию света. Наконец, полученное Джеймсом Клерком Максвеллом уравнение распространения электромагнитных волн (включая свет), дало аргумент в пользу волновой модели.

В 1905 г. Эйнштейном была предложена квантовая теория излучения и поглощения света в газах, объяснявшая эксперименты по фотоэлектрическому эффекту. Согласно модели Эйнштейна, свет является потоком частиц, которые, падая на пластинку металла, выбивают электроны из кристаллической решётки, чем и вызывают электрический ток. Эти частицы, т.е. фотоны, Эйнштейн приравнял к квантам Планка (фотон есть квант света). Так впервые появилась неизбежная двойственная природа света: в одних случаях он ведёт себя как поток частиц, в других - как волна.

Затем французский физик Луи де Бройль распространил корпускулярно-волновой дуализм на все атомные объекты. Позже это подтвер