Современная кристаллография и минералогия

Методическое пособие - Геодезия и Геология

Другие методички по предмету Геодезия и Геология

яда может рассматриваться как элементарная трансляция, называются трансляционными.

Различают четыре типа трансляционных решёток.

. Решётки, элементарная ячейка которых является примитивным параллелепипедом и имеет узлы только в своих вершинах, называются примитивными.

. Решётки, элементарная ячейка которых кроме узлов в вершинах имеет ещё один узел в центре объёма, называются объёмно-центрированными.

 

Рис. 5.1. Двумя трансляциями можно вывести все узлы плоской сетки

 

. Решётки, элементарная ячейка которых имеет узлы в вершинах и центрах всех граней, называются гранецентрированными.

. Решётки, элементарная ячейка которых имеет узлы не только в вершинах, но и в центрах двух параллельных граней называются базоцентрированными.

Распределение трансляционных решеток по сингониям показано в таблице 2 на рис. 5.1. Всего во всех семи сингониях получаем 14 различных трансляционных решеток. Впервые все виды трансляционных решеток были выведены Бравэ, поэтому их часто называют также решетками Бравэ.

Е. С. Федоров, разрабатывая свою теорию кристаллического строения, пришел к выводу, что любая из решеток Бравэ может быть получена с помощью однородных деформаций (растяжения, сжатия или сдвига) из четырех идеальных решеток, из которых три являются решетками кубической сингонии. В зависимости от того, из какой исходной предельной решетки путем минимальных деформаций получена решетка Бравэ, она относится к кубическому или к гексагональному типу. Таким образом, по Федорову весь мир кристаллов подразделяется на два типа - кубический и гексагональный. В этом заключается сущность одного из основных законов кристаллографии - закона кристаллографических пределов Федорова. В соответствии с этим законом кристаллы кубической и гексагональной сингонии являются идеальными или предельными, а кристаллы остальных сингоний есть производные от идеальных.

Поскольку на кристаллических кристаллах преобладают грани, отвечающие плоским сеткам с наибольшей ретикулярной плотностью, четырем основным типам решеток должны быть свойственны различные преобладающие грани. Так, например, самые плотные плоские сетки в простой решетке имеют символ (100), в объемноцентрированной - (110), а в гранецентрированной - (111). На кристаллах с этими типами решеток указанными символами обладают, как правило, и наиболее часто встречающиеся грани.

Отсюда вытекает возможность по внешним признакам и форме кристалла определять их тип решетки. Зная тип решетки и углы между гранями можно определить состав вещества. Такой метод определения вещества, разработанный Федоровым и известный под названием кристаллохимического анализа, имеет следующие преимущества:

). Ничтожность количества вещества при диагнозе,

). Неуничтожаемость вещества при диагнозе, чего нельзя избежать при химическом анализе,

). Сравнительная быстрота определения.

Кристаллохимический анализ Федорова оказал большое влияние на развитие нового отдела кристаллографии - кристаллохимии.

Как указывалось выше, на элементарную ячейку примитивной решетки всегда приходится только один узел, т. к. каждый узел примитивной решетки принадлежит восьми соседним параллелепипедам повторяемости. На долю объемноцентрированной решетки приходится уже два узла, ибо узел, находящийся в центре решетки (ячейки), целиком принадлежит ей. Элементарной ячейке базоцентрированной решетки принадлежат также два узла (по 1/8 узла от каждой вершины и по 1/2 узла от двух граней ячейки). Наконец, в гранецентрированной решетке каждой ячейке принадлежат 4 узла (один узел - от всех вершин ячейки и три узла - от всех шести её граней).

Объемно-, гране- и базоцентрированные решетки можно рассматривать как совокупность нескольких простых решеток с одинаковыми элементарными ячейками, выдвинутых одна в другую. Число этих простых решеток равно количеству узлов, приходящихся на ячейку непримитивной решетки. Например, гранецентрированную решетку можно представить себе состоящей из четырех одинаковых параллельно расположенных примитивных решеток.

Не примитивную, т. е. сложную, элементарную ячейку характеризуют координатами принадлежащих ей узлов. Совокупность координат узлов, входящих в элементарную ячейку, называют базисом ячейки.

Координаты узла, измеренные промежутками рядов, принятых за кристаллографические оси, называют индексами узла. Совокупность индексов узла, взятая в двойные квадратные скобки, образует символ узла.

Если x, y и z - координаты некоторого узла, то индексами узла будут

 

u=x/a0, v=y/b0 и w=z/c0

 

где a0, b0 и c0 - промежутки координатных рядов. Символ данного узла, следовательно, [[uvw]].

Таким образом, базис решетки должен состоять из символов тех узлов, которые принадлежат элементарной ячейке. В соответствии с этим, например, в базис объемноцентрированной ячейки должны войти символы двух узлов, а в базис гранецентрированной ячейки - символы четырех узлов.

На рис. 5.2 приведены элементарные ячейки всех четырех типов трансляционных решеток и базисы этих ячеек. Узлы, символы которых входят в базис ячейки, обозначены на чертеже более крупными точками.

 

Рис. 5.2 Базисы элементарных ячеек четырех типов трансляционных решеток

 

Таблица 5.1 - Ячейки трансляционных решёток

СингонияТрансляционная решёткаПримитивнаяБазецентрированнаяОбъёмноцентрированнаяГранецентрированнаяТриклиннаяМоноклиннаяРомбическаяТригональнаяТетрагональнаяГекса