Свойства инструментальной керамики с добавками ультрадисперсных оксидов

Дипломная работа - Разное

Другие дипломы по предмету Разное



? плазмохимических порошков являются монокристаллами и имеют размеры от 10 до 100-200 нм и более, Плазмохимический синтез обеспечивает высокие скорости образования и конденсации соединения и отличается достаточно высокой производительностью. Главные недостатки плазмохимического синтеза - широкое распределение частиц по размерам и вследствие этого наличие довольно крупных (до 1-5 мкм) частиц, т. е. низкая селективность процесса, а также высокое содержание примесей в порошке. К настоящему времени плазмохимическим методом получены высокодисперсные порошки нитридов титана, циркония, гафния, ванадия, ниобия, тантала, бора, алюминия и кремния, карбидов титана, ниобия, тантала, вольфрама, бора и кремния, оксидов магния, иттрия и алюминия.

.1.3 Осаждение из коллоидных растворов

Обычный способ получения наночастиц с помощью коллоидных растворов заключается в их синтезе из исходных реагентов раствора и прерывании реакции в определенный момент времени, после чего дисперсная система переводится из жидкого коллоидного состояния в дисперсное твердое.

Коллоидные частицы оксидов металлов получают гидролизом солей. Нанокристаллические оксиды титана, циркония, алюминия, иттрия можно получить гидролизом соответствующих хлоридов или гипохлоридов. Тонкодисперсный оксид титана получают также гидролизом титанилсульфата с последующим прокаливанием аморфного осадка при 1000 - 1300 К.

Среди всех методов получения изолированных наночастиц и нанопорошков метод осаждения из коллоидных растворов обладает наиболее высокой селективностью и позволяет получать стабилизированные нанокластеры с очень узким распределением по размерам, что весьма важно для использования наночастиц в качестве катализаторов или в устройствах микроэлектроники. Основная проблема метода осаждения из коллоидных растворов связана с тем, как избежать коалеiенции наночастиц.

Для получения высокодисперсных порошков из коллоидных растворов применяется также криогенная сушка. Раствор распыляется в камеру с криогенной средой и вследствие этого замерзает в виде мелких частиц. Затем давление газовой среды уменьшают так, чтобы оно было меньше, чем равновесное давление над замороженным растворителем, и нагревают материал при непрерывной откачке для возгонки растворителя. В результате образуются тончайшие пористые гранулы одинакового состава, прокаливанием которых получают порошки.

.1.4 Технология разложения нестабильных соединений

В настоящее время эта технология рассматривается как перспективный способ получения нанопорошков с размером частиц 20-300 нм.

Наиболее изученным является термическое разложение азидов, оксалатов, перхлоратов, стифнатов, перманганатов, карбонатов, гидратов, цитратов, ацетатов, гидрооксидов, алкоголятов. Процесс включает три реакции: термолиз, окисление и гидролиз. К преимуществам этого метода относится низкая температура процесса, малые реакционные объемы, отсутствие трудоемких и малоэффективных операций промывки и фильтрования конечных продуктов, регулируемая дисперсность, хорошая спекаемость и высокая чистота получаемых порошков. Недостатком рассматриваемого метода является сложность контроля и регулирования размеров частиц при одновременном конкурентном протекании двух процессов - разложения исходного соединения и спекания частиц конечного продукта под воздействием температуры. Тем более, что получаемые этим методом порошки отличаются высокой химической активностью [6]. Для получения нанопорошков оксидов металлов перспективно использование в качестве исходных продуктов алкоголятов (спиртовых производных металлов). При этом имеется возможность глубокой очистки алкоголятов от соединений других металлов вследствие их летучести и растворимости в органических растворителях. Другими примерами использования метода могут служить получение нанопорошка оксида магния термическим разложением тригидрата углекислого магния и получение нанопорошков железа, кобальта, никеля и меди с размерами частиц 100-300 нм пиролизом их формиатов при температуре 470-530 К [6].

.2 Прессование и спекание нанопорошков

.2.1 Холодное прессование нанокристаллической керамики

Прессование в стальных пресс-формах - давно известный процесс порошковой технологии, достаточно подробно описанный в классической научной литературе. Наночастицы обладают особенностями, обусловленными как дисперсностью, так и природой вещества. При сухом компактировании керамические порошки формуются труднее, чем металлические. Согласно экспериментальным данным, при комнатной температуре для металлических наночастиц достижима относительная плотность >95%, тогда как, прессуя нанопорошки керамики, можно получить не более 75-90% теоретической плотности. Такие высокие значения относительной плотности были достигнуты при давлении около 1 ГПа, которое существенно превышает нормальное рабочее давление современных технологий получения материалов традиционной дисперсности. Действительно, плотность прессовок увеличивается с ростом давления прессования. Например, компактирование нанопорошков Si3N4, TiN с размером частиц 70-80 нм показало, что исходной относительной плотности до 65% достигают посредством холодного прессования в стальной пресс-форме, а для ее повышения до 80% следует повысить давление до 7 ГПа. Основное неудобство приложения очень высоких давлений - это расслоение, явление, известное в порошковой металлургии. Высокие остаточ