Розробка учбового матеріалу для викладання вищої математики на тему "Наближені методи обчислення визначених інтегралів"
Информация - Педагогика
Другие материалы по предмету Педагогика
?оектуючи їх на вісь одержимо точки (рис.3.1).
Виберемо тепер полюс із відстанню й проведемо промені . Розраховуєму первісну функцію - лінію приблизно можна замінити ламаною з вершинами . Послідовні ланки цієї ламаної будуть паралельні відповідним променям, а саме: . Справді, кутовий коефіцієнт ланки на підставі формули (1) дорівнює
(3.6)
У силу ж побудови кутовий коефіцієнт променів якщо
(3.7)
Отже
(3.8)
Таким чином, технічно побудова графіка функції може бути здійснена так:
із точки проводимо пряму паралельну променю , до перетину в точці з вертикаллю;
із точки проводимо пряму паралельну променю , до перетину в точці з вертикаллю й так далі.
Слід зазначити, що при застосуванні даного методу графічного інтегрування точки не обовязково брати рівновіддаленими. Для збільшення точності побудови рекомендуються характерні точки графіка інтегрувальної функції (нулі, точки екстремуму, точки перегину) обовязково включати до складу точок .
Висновок: Графічне інтегрування володіє, взагалі говорячи, малою точністю. Тому цей прийом корисно використовувати тоді, коли потрібно мати загальне подання про інтеграл функції або коли підінтегральна функція задана графічно і її аналітичне вираження нам невідомо.
Список використаної літератури
1. Бойко Л.Т. Основи чисельних методів: навч. посібник. - Д.: Вид-во ДНУ, 2009. - 244 с.
2. Демидович Б.П., Марон И.А. Основы вычислительной математики. - М.: Изд-во „Наука” - „Физматлит", 1979. - 664 с.
3. Канторович А. В., Крылов В.И. Приближенные методы высшего анализа. - М.: Изд. Физико-математической литературы, 1962. - 708 с.
4. Крылов В.И. Вычислительные методы: учебное пособие / В.И. Крылов, В.В. Бобков, П.И. Монастырный. - М.: „Наука”, 1976. - Т.1. - 304 с.
5. Крылов В.И. Вычислительные методы: учебное пособие / В.И. Крылов, В.В. Бобков, П.И. Монастырный. - М.: „Наука”, 1977. - Т.2. - 399 с.
6. Марчук Г.И. Методы вычислительной математики. Схемы, таблицы. - М.: " Наука", 1977. - 456 с.
Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. - М.: „Наука”, 1970. - Т.2. - 800 с.