Розробка учбового матеріалу для викладання вищої математики на тему "Наближені методи обчислення визначених інтегралів"

Информация - Педагогика

Другие материалы по предмету Педагогика

?ратурними формулами найвищого степеня точності. Вперше вони були розглянуті Гауссом і тому їх часто називають формулами гауссового типу.

Якщо вузли вибрати з міркувань зручності (рівномірно розташованими ,), а коефіцієнти - з міркувань точності, то у випадку отримаємо квадратурні формули Ньютона - Котеса [2].

Якщо вузли вибрати з міркувань точності, а коефіцієнти - з міркувань зручності (всі коефіцієнти однакові), то добудемо квадратурні формули, що носять імя Чебишова [2].

Обгрунтування інтерполяційних квадратурних формул будується на наступних висновках [1].

Нехай на відрізку інтегрування якось зафіксовані різні між собою вузли , і будемо вибирати лише коефіцієнти () так, щоб формула (1.4) була якомога точнішою. Припускаємо, , тобто функія і всі її похідні до порядку включно є неперервними на відрізку . Візьмемо квадратурні вузли як вузли інтерполяції (оскільки вони всі з відрізку інтегрування та всі різні між собою), та побудуємо інтерполяційний багаточлен для функції . Будемо мати таку рівність

 

(1.5)

(1.6)

(1.7)

(1.8)

 

Розглянемо тепер інтеграл від функції

 

(1.9)

 

підставимо (1.6), (1.7), (1,8) до формули (1.9)

 

(1.10)

 

Якщо позначити

 

(1.11)

(1.12)

 

то інтеграл (1.10) можна переписати у вигляді

 

(1.13)

 

Відкинувши у (1.13) похибку , добудемо наближену формулу (1.4).

Означення. Квадратурна формула (1.4) будемо називати інтерполяційною, якщо квадратурні коефіцієнти , визначаються формулами (1.11). Нагадаємо, що квадратурні вузли при цьому всі різні та всі розташовані на відрізку інтегрування, в усьому іншому вони довільні.

Формула (1.12) визначає похибку інтерполяційної квадратурної формули. З похибки видно, що алгебраїчний степінь точності інтерполяційної квадратурної формули дорівнює . Збільшити степінь точності можна лише за рахунок вибору вузлів .

Квадратурні формули при сталій ваговій функції та з рівновіддаленими вузлами називають формулами Ньютона-Котеса у память того, що вперше вони в достатньому загальному вигляді були розглянуті Ньютоном, коефіцієнти вперше були добуті Котесом [4].

Кінечний відрізок інтегрування ділимо на рівних частин довжини , точки ділення беремо за вузли інтерполяційної формули. Спростимо вигляд квадратурних коефіцієнтів ,, які визначаються формулою (1.11), підставивши туди

 

,.

 

Крім того перейдемо до нової змінної інтегрування , де

Для виконання всіх цих дій спочатку розглянемо добуток у формулі (1.11)

 

(1.14)

 

Підставимо добуток (1.14) до формули (1.11) та перейдемо до нової змінної, будемо мати

(1.15)

 

Де

 

(1.16)

 

Квадратурна формула Ньютона-Котеса приймає вигляд

 

(1.17)

 

Алгебраїчна степінь точності формули (1.17) дорівнює . Коефіцієнти (1.16) називаються коефіцієнтами Котеса. Вони мають властивості:

. Дійсно, підставимо до формули (1.17) , тоді , при цьому наближена формула стає точною. Виконуємо інтегрування властивість доведена.

, тобто рівновіддалені від кінців коефіцієнти формули Ньютона -Котеса є однаковими. Дійсно, маємо з формули (1.16)

 

 

Зробимо заміну змінної інтегрування тоді

 

 

В добутку перейдемо до нового індексу і властивість доведена

 

 

3. Коефіцієнти не залежать від довжини відрізка інтегрування та підінтегральної функції, тому вони можуть бути обчислені раз і назавжди

В залежності від вибраного параметра n отримана загальна форма квадратурних рівнянь розподіляється на випадки [6]:

1) Коли , то застосовуєма форма квадратурних рівнянь називається - „квадратурна формула трапеції”;

2) Коли , то застосовуєма форма квадратурних рівнянь називається - „квадратурна формула Симпсона”;

3) Коли , формула (1.19) не застосовується, оскільки значення не визначені, тому застосовується особливий випадок „квадратурної формули прямокутників (ліві, праві, центральні) ".

2. Чисельні методи інтегрування

 

2.1 Метод прямокутників

 

Нехай є відрізок і нам треба обчислити визначений інтеграл

 

(2.1 1)

 

за попередньо представленою загальною квадратурною формулою Нютона - Котеса (1.4)

 

(2.1 2)

 

де - деякі фіксовані вузли

Найпростіший варіант інтерполяційної квадратурної формули (2.1 2) виникає, коли [1]. У цьому випадку не можна скористатися формулою (1.20), бо коефіцієнт (1.19) при невизначений. Тому, як і при побудові загальної інтерполяційної формули, замінимо підінтегральну функцію інтерполяційним багаточленом нульового степеня, що побудований за єдиним вузлом .

 

(2.1 3)

 

при заміні підінтегральної функції (2.1 2) інтерполяційним поліномом нульового степеня, що побудований по єдиному вузлу

 

(2.1 3)

 

Знайдемо коефіціент

 

(2.1 4)

 

Після інтегрування маємо квадратурну „формулу прямокутника”:

 

, (2.1 5)

 

При її називають формулою лівих прямокутників,

При її називають формулою правих прямокутників,

При - центральних (або середніх) прямокутників.

Геометричне тлумачення цієї формули показано на рис 2.1

 

Рис.2.1 Геометричне зображення „формули прямокутників"

 

Оцінимо похибку квадратурної формули (2.1 5) за умови, що . За означенням похибки квадратурної формули (2.1 5) маємо

 

(2.1 6)

 

Функцію запишемо у вигляді розвинення ?/p>