Реконструкция оборудования ОС п. Гастелло Жаркаинского района Акмолинской области на базе ЦАТС МС-240
Дипломная работа - Компьютеры, программирование
Другие дипломы по предмету Компьютеры, программирование
?ие между содержимым ОЗУ и ПУУ вещь совершенно нормальная, ибо именно оно и служит для организации вычислительного процесса, в результате которого УУ выравнивает (проводит во взаимно однозначное соответствие) содержимое ОЗУ и ПУУ согласно алгоритму функционирования системы. Однако под действием случайных влияний (помех) содержимое ОЗУ и ПУУ может самопроизвольно (без ведома УУ) измениться и не вписаться в рамки разрешенных логических состояний, свойственных нормальному протеканию процесса обслуживания вызова. Поэтому УУ вынуждено тратить часть своей производительности на восстановление (регенерацию) истинного или, по крайней мере, разрешенного состояния системы. Регенерация производится автоматически операционной системой УУ без вмешательства оператора как в моменты спада нагрузки, так и на фоне обслуживания вызовов, и призвана удерживать пропускную способность системы от последствий помех. Способы и методы, с помощью которых достигается поставленная цель построение надежного программного обеспечения, - есть сложная самостоятельная задача. Известные методы расчета пропускной способности систем распределения информации часто сводится к использованию одной из двух моделей, учитывающих только неисправность линий (под линией кроме самого комплекта соединительной линии принимается и соответствующие линейно кабельные сооружения связи) как наименее надежного элемента системы.
В первой модели занятость линии определяется двумя потоками: собственно вызов (с интенсивностью ?, интенсивностью обслуживания ?, интенсивностью нагрузки A=?/?) и потоком моментов выхода из строя линий, образуемым конечным числом источников нагрузки числом исправных линий. В состоянии с k исправными линиями интенсивность выхода одной из них из строя равна k?, интенсивность ее обслуживания ?, интенсивность нагрузки AL=?/?. Если предложить, что линии выходят из строя намного реже, чем поступают вызовы, имеем два независимых процесса: процесс обслуживания вызовов, который описывается формулой Эрланга с переменным числом исправных линий, и процесс выхода из строя и восстановления линий, где число исправных линий описывается распределением Энгсета. Следовательно, вероятность потери вызова на V-линейном пучке.
В=
Во второй модели также имеются два потока: простейший поток вызовов с интенсивностью нагрузки A=?/? и простейший поток моментов выхода из строя линий, причем последний имеет абсолютный приоритет и интенсивность отказов AL=?/?. Вероятность потери источника вызова B=EV(A+AL), а полезная нагрузка A0= ?(1-B)tm, где tm- средняя длительность обслуживания источника вызова. Так как обслуживание вызова может быть прервано, то tm ?-1, A0=A[1-EV(AL=a)]-A[EV(AL+A)-EV(A)].
Рассмотрим систему распределения информации, которая в общем виде (рисунок 3.4) состоит из абонентских комплектов, коммутационного поля, комплектов соединительной линии и управляющих устройств. К управляющим устройствам относятся центральное и периферийные управляющие устройства.
Рисунок 3.4 - Модель СМО с надежными элементами
Коммутационное поле имеет N входов, выходы КП разбиты на h направлений, пучок линий в j-м направлении содержит Vj линий (j=). Вызову, поступившему на вход системы, может потребоваться соединение с одной и только одной линией определенного для данного вызова направления, причем безразлично, с какой именно и по какому пути.
Поток вызовов, поступающий на вход системы, будем считать примитивным (пуассоновской нагрузкой второго рода), если число источников нагрузки N100?/? или простейшим (пуассоновской нагрузкой первого рода) при N>100?/?. В первом случае параметр свободного источника вызовов ?, интенсивность обслуживания вызова ?, интенсивность поступающей нагрузки a0=?/?. Во втором случае параметр потока вызовов ?=N?, интенсивность обслуживания ?, интенсивность нагрузки А0=?/?. Вероятность того, что поступающий вызов i-го входа потребует соединения с j- м направлением может зависеть как от номера входа, так и от номера направления. Будем считать, что эта вероятность зависит только от j. В этих условиях характер потока вызовов в направлении сохранится, его интенсивность аj=kja0(Aj=kjA0). Структурные параметры КП предполагаются известными. Элементами системы обладают конечной надежностью.
Последнее означает, что на элементы системы воздействует поток неисправностей, который может быть примитивным или простейшим с интенсивность нагрузке АА.К. для абонентских комплектов, АК.Э для коммутационных элементов КП, АМ.С.для монтажных соединений АЛ для линейных (исходящих, входящих комплектов), АШ для шнуровых комплектов, АР для периферийных управляющих устройств, АС для центрального управляющего устройства. Поток неисправностей всегда примитивны, однако в тех случаях, когда параметр потока неисправностей одного элемента весьма мал, а число элементов велико, характер потока близок к простейшему. Интенсивности восстановления неисправных элементов системы соответственно равны ra.r.,тАж, rc.
Любой вызов обслуживается центральным управляющим устройством, имеющим Vс - кратный резерв, которое будучи в неисправном состоянии, через Vр периферийных управляющих устройств получает информацию о поступлении вызова, его требованиях (например, номере в направлении с которым нужно установить соединение или в номере входа по которому поступил вызовов), о состоянии сомой системы, то есть о том, какими путями в КП проходят установленные соединения и какие элементы системы исправны. Неис