Расширение возможности переработки отходов с помощью плазменных технологий

Дипломная работа - Экология

Другие дипломы по предмету Экология



?учих соединений ряда радионуклидов и тяжелых металлов, а также позволили перерабатывать отходы и сливать шлаковый расплав без добавления флюсов.

Получаемый в шахтной печи пирогаз имел теплотворную способность 4,5-5,5 МДж/кг. Это позволило, после начального нагрева с помощью плазмотрона, поддерживать необходимую температуру в камере дожигания за счет тепла, выделяющегося при сгорании пирогазов, при выключенном плазменном источнике нагрева, и эффективно сжигать смолы и сажу. Объемы отходящих газов на выходе из шахтной печи колебались в пределах от 100 до 150 м3/ч, на выходе установки - от 450 до 550 м3/ч. Унос радионуклидов цезия-137 и 134 из шахтной печи не превышал 10-12 %, кобальта-60 - 3%, трансурановых элементов - в пределах 1% при средней объемной активности пирогаза на выходе из шахты 0,1 - 2 кБк/м3 (137Cs).

Опытно-промышленная установка "Плутон"

В результате проведенных в МосНПО "Радон" исследований была подтверждена возможность эффективной переработки радиоактивных отходов смешанного типа в плазменной шахтной печи с получением шлакового компаунда, обладающего чрезвычайной стойкостью к агрессивным воздействиям окружающей среды и принято решение о строительстве опытно-промышленной установки производительностью до 200-250 кг/ч (см. рис. 3, таб. 1).

Рис. 3. Технологическая схема установки "Плутон"

Таблица 1. Сравнительные характеристики плазменных установок переработки РАО

Шахтная печь выполнена из огнеупорных и теплоизолирующих материалов с наружной облицовкой стальным листом. Высота шахты 6,4 м (от пода), внутреннее поперечное сечение 0,80,8 м, загружаемый объем шахты - 3,5 м3. В своде плавильной камеры размещены два плазмотрона мощностью 100-150 кВт каждый, которые обеспечивают температуру расплава 1500-1700оС.

Отходы с помощью конвейера через шиберные устройства узла загрузки, попадают в верхние слои шахты, заполненной перерабатываемым материалом. Опускаясь под действием силы тяжести, перерабатываемый материал нагревается за счет тепла отходящих газов, движущихся навстречу движению столба материала в шахте печи. В верхних и средних слоях шахты отходы проходят стадии сушки за счет тепла отходящих газов и пиролиза при отсутствии свободного кислорода, сопровождающиеся интенсивным газовыделением. Органические остатки отходов и тугоплавкие неорганические составляющие поступают в нижние слои шахты - зону горения коксового остатка и плавления шлака.

Шлаковый расплав накапливается в плавильной ванне, где он гомогенизируется, перегревается и через узел слива направляется в бокс приемки расплава. Шлак сливается в непрерывном или периодическом режиме в металлические контейнеры, устанавливаемые в приемном боксе. Температура шлакового расплава в ванне печи достигает 1600-1800?С, при этом температура отходящих газов на выходе шахтной печи не превышает 250-300?С. После охлаждения расплава в приемных контейнерах застывший шлак отправляется на полигон долговременного хранения кондиционированных форм радиоактивных отходов.

В конструкции печи предусмотрена возможность подачи в шахту дутьевого воздуха для регулирования производительности печи или состава пирогаза. Пиролизные газы из шахты печи направляют в камеру дожигания, где горючие газовые и аэрозольные компоненты пирогаза сгорают при температуре 1100-1300оС.

Далее отходящие газы охлаждают в испарительном теплообменнике до температуры 300оС, очищают от аэрозолей в рукавном фильтре, охлаждают в теплообменнике и нейтрализуют вредные газообразные компоненты (HCl, NO2, SO2) в абсорбере, орошаемом циркулирующим по контуру щелочным раствором. Перед выбросом в атмосферу отходящие газы проходят дополнительную санитарную очистку в абсолютном фильтре.

Источником нагрева печи служат дуговые плазмотроны, установленные в подовой части печи над ванной, в качестве плазмообразующего газа используется воздух. Для нагрева печи и камеры дожигания используються плазмотроны постоянного тока электрической мощностью 100-150 кВт, разработанные в ГУП МосНПО "Радон". Для питания плазмотронов использованы тиристорные и конденсаторные источники постоянного тока.

Установка оснащена датчиками контроля температур, давления, электрических параметров и расходов сред. Управление установкой производится с пульта, в состав которого входят измерительные приборы, регуляторы тока плазмотронов, комплекс регистрации и управления технологическими параметрами на базе компьютера и контроллера, кнопки пуска и аварийного отключения плазмотронов и индикаторы состояния узлов установки.

Дробление стекла, ПВХ, полиэтилена, дерева, шамотного кирпича и фрагментов автомобильных покрышек дает удовлетворительные результаты. При дроблении бумаги значительно, в десятки раз, увеличивается объем измельченной бумажной массы. Наилучшие результаты дает дробление смеси твердых хрупких материалов (стекло, кирпич) и мягких или пластичных материалов (полиэтилен, ПВХ, ткань, волокно, дерево, картон).

Для загрузки отходов использовался дисковый цепной конвейер в герметичном трубчатом корпусе.

Тем не менее, шахтный процесс из-за очень низкой плотности дробленых отходов обеспечить не удается: на выходе шахтной печи получали очень бедный пирогаз, в шахте наблюдалось сводообразование и зависание отходов.

По результатам испытаний был сделан вывод, что целесообразно вести загрузку в шахтную печь радиоактивных отходов в более плотном состоянии в регламентируемой первичной упаковке (кр