Расширение возможности переработки отходов с помощью плазменных технологий

Дипломная работа - Экология

Другие дипломы по предмету Экология



нейтрального газа, содержащего менее 0,02% активных газовых примесей, при давлении 1 кПа (1 ат) термодинамически эквивалентна проведению процесса в вакууме порядка 2 Па и позволяет осуществлять эффективную дегазацию больших масс металла без использования вакуумного оборудования.

Слабым звеном плазменно-дугового переплава в печах с керамическим тиглем является выпуск и разливка металла, так как в это время рафинированная сталь контактирует с воздухом. Разработанные меры по защите металла от воздействия воздуха во время выпуска и разливки пока недостаточно эффективны.

Кроме того, при использовании печей такого типа имеется опасность прогорания подового водоохлаждаемого электрода, что может привести к аварии. Использование плазменного нагрева значительно упрощает технологию получения качественного металла в больших количествах, улучшает условия труда. Плазменная печь работает практически бесшумно и значительно меньше выделяет дыма.

Плазменные дуговые печи применяют для получения стали и сплавов высоколегированных марок высокого качества. В этих печах в результате меньшего угара значительно экономятся легирующие элементы (хром, никель и др.), имеется возможность регулировать содержание азота в металле изменением состава атмосферы.

По сравнению с металлом обычной выплавки качество металла плазменно-дуговой переплав значительно выше, а себестоимость его ниже себестоимости металла вакуумных плавок.

ГЛАВА 2. ПЛАЗМЕННЫЕ ТЕХНОЛОГИИ: РАСШИРЕНИЕ ВОЗМОЖНОСТИ ПЕРЕРАБОТКИ ОТХОДОВ

Сжигание отходов является одной из наиболее распространенных и эффективных технологий, позволяющих значительно сокращать объем отходов. На сжигание направляются выделенные в результате сортировки лишь горючие компоненты отходов. Недостатком сжигания радиоактивных отходов является образование опасного для транспортировки, пылящего и непригодного для захоронения продукта - золы, сконцентрировавшей в себе радиоактивные изотопы [1]. различные методы дальнейшего кондиционирования радиоактивного зольного остатка требуют создания дополнительных промышленных установок, транспортирования зольного остатка на переработку, внесения дополнительных материалов и, в ряде случаев, существенных энергетических затрат. Использование для нагрева печей и камер дожигания дымовых газов устройств сжигания углеводородных жидких или газовых топлив в избытке воздуха приводят к образованию больших объемов дымовых газов, нуждающихся в очистке от радиоактивных и вредных химических веществ перед выбросом в атмосферу, эффективность сжигания органических компонентов отходов обеспечивается за счет также двух- трехкратного избытка воздуха, подаваемого на колосники.

В то же время плазменные методы прямой переработки радиоактивных отходов позволяют получать продукт, пригодный для транспортировки и захоронения или долгосрочного хранения. Их преимуществом перед обычными методами сжигания являются как повышенные коэффициенты сокращения объема отходов и снижение объемов образующихся вторичных отходов, так и получение продукта в виде плавленого шлакового компаунда, обладающего высокой химической стойкостью к агрессивным воздействиям окружающей среды. Сдерживающим фактором в развитии плазменных технологий переработки РАО являются высокие степени уноса легколетучих радионуклидов (десятки процентов), прежде всего, цезия-137, из плавителей и других высокотемпературных узлов плазменных установок.
Предварительные работы по выбору материалов и конструкции высокотемпературных узлов и аппаратов для плазменной переработки РАО, исследование и поиск оптимальных технологических режимов, переработка опытных партий имитаторов и реальных РАО проводились на пилотной установке "Пиролиз", созданной в Опытном заводе прикладных радиохимических технологий МосНПО "Радон" [2, 3]. Основой опытной установки являлась печь шахтного типа, состоявшая из шахты и плавителя, узлов загрузки отходов и слива шлакового расплава (см. рис. 1). Сверху плавителя установлен дуговой плазмотрон, в нижней торцевой части плавителя имеется сливное устройство, состоящее из сливного блока со сливным отверстием, установленного горизонтально, и стопора, запирающего сливное отверстие в процессе разогрева плавителя и по окончании слива. Высота шахты от пода ванны составляет 4,2 м, внутреннее сечение 0,40,4 м.

Рис. 1. Схема пилотной установки "Пиролиз"

Отработка технологии плазменного кондиционирования отходов проводилась на отходах смешанного типа, включавших как горючие, так и негорючие компоненты. Отходы были упакованы в многослойные бумажные мешки (крафт-мешки). Габариты упаковок находились в пределах 350 x 350 x 600 мм. Вес упаковок колебался от 2 до 20 кг; в основном, упаковки имели вес 8-10 кг. Удельная активность отходов находилась в диапазоне от 104 до 106 Бк/кг.

Рис. 2. Шахтная печь: 1 - узел загрузки, 2 - шахта, 3 - под, 4 - бокс приема шлака, 5 - плазмотрон, 6 - стопор, 7 - выход пирогаза.

Средняя производительность печи составила 40-50 кг отходов в час, затраты электроэнергии на плазмотрон составляли от 1 до 2 кВтч на 1 кг отходов в зависимости от их состава. Время выхода на рабочий режим шахтной печи не превышало 2-3 часа до начала загрузки отходов и 5-6 часов до начала слива шлака.

Выбранные технологические режимы обеспечили градиент температур от 1500 - 1800оС в подовой части до 200 - 350оС в зоне выхода пирогаза, препятствующий уносу из печи ле