Расчетное обоснование выбора парашютной системы

Дипломная работа - Транспорт, логистика

Другие дипломы по предмету Транспорт, логистика



/p>

Рисунок 4 - Тормозной парашют

Вспомогательные парашюты - называют парашюты (рис. 5), обеспечивающие работу других куполов. Вытяжные парашюты служат для раскрытия основных (или запасных) парашютов. Они бываю жесткие (с пружинным каркасом) и мягкие (без него). Стабилизирующие парашюты также являются вытяжными, но предварительно выполняют дополнительную функцию - стабилизацию падения парашютиста (груза). Поддерживающие парашюты, применяемые на некоторых системах (например, ПЛП-60), нужны для предотвращения неправильного процесса раскрытия.

Рисунок 5 - Вспомогательный парашют

Пристрелочные парашюты - используются для пристрелки, то есть для определения точки выброски парашютистов. Пристрелочный парашют должен обеспечивать скорость снижения под куполом такую же, как в среднем у парашютистов, то есть 5 м/c. Так как расчет точки выброски ведется для нейтрального купола, пристрелочный парашют должен быть нейтральным.

Людские парашюты - это все парашютные системы (рис. 6), предназначенные для прыжков людей. Таких систем существует больше всего, и их надо классифицировать отдельно.

Рисунок 6 - Людские парашюты

1. Предварительное определение основных параметров парашютной системы

Под параметрами парашютной системы в первую очередь будем понимать площадь купола, длину строп. Здесь рассматриваются только грузовые парашюты формы "крест". Значения этих параметров существенным образом зависит от скорости установившегося движения (4-ый этап, см. введение), которая является и скоростью приводнения.

С другой стороны, от скорости приводнения зависит значение перегрузки, испытываемое изделием при ударе о воду. Следовательно, допустимую скорость приводнения мы будем находить из условия не превышения значений допустимых перегрузок.

1.1 Определение скорости приводнения

.1.1 Основные сведения из теории удара при приводнении

Явление приводнения будем рассматривать при условии, что вода несжимаема, а приводняющийся объект - абсолютно твердое тело.

Проникание авиационного объекта (АО) через спокойную или взволнованную поверхность воды сопровождается рядом физических явлений и характеризуется множеством параметров. Наиболее существенными характеристиками процесса проникания являются:

-участие в них трёх компонентов: твердого тела, жидкости и воздуха,

-нестационарное движение твердого тела и среды;

-быстротечность процесса и изменчивость его характеристик;

-механические нагрузки на элементы конструкции.

При исследовании такого движения теоретическая гидромеханика пользуется моделями невязкой (идеальной) и вязкой (реальной) жидкости. Соответственно этому сила взаимодействия твердого тела и жидкости рассматривается как бы состоящей из двух частей: силы сопротивления идеальной жидкости (инерционное сопротивление) и силы сопротивления реальной жидкости (вязкое сопротивление). Рассмотрим систему, состоящую из твердого тела (Т), жидкости (Ж) и воздуха (В). В состав системы входят частицы, находящиеся внутри замкнутого объема, ограниченного контрольной поверхностью (КП), расположенной на таком удалении от точки приводнения, что обмен частиц через эту поверхность отсутствует (рис. 7).

Система неизменного (постоянного) состава предполагает отсутствие взаимодействия с внешней средой через контрольную поверхность. Для такой системы вектор количества движения определится как сумма:

Q = Qт + Qж + Qв.

Обычно количество движения воздуха в сравнении с другими составляющими мало и поэтому его, как правило, не учитывают. В этом случае последнее выражение принимает вид:

Q = Qт + Qж.

Будем предполагать, что процесс соударения тела с поверхностью воды кратковременен, причем такой, что тело не успевает за этот промежуток времени заметно изменить свое угловое положение. Поэтому уравнение изменения момента количества движения рассматривать не будем.

Рисунок 7 - Система неизменного состава

Известно, что скорость изменения вектора количества движения тела равна вектору приложенных к нему сил, поэтому запишем:

(1. 1)

где R - вектор внешних сил. Обычно при рассмотрении ударных воздействий пренебрегают силой тяжести, поэтому вектор R представляет собой гидродинамическое воздействие вязкой жидкости на тело.

Вектор количества движения представим в виде:

Q = (m + l)V,

где m - диагональная матрица, элементами которой является масса тела;

l - матрица присоединенных масс жидкости;

V - вектор скорости движения тела.

Подставляя это выражение в (1.1), получим:

(1. 2)

Выражение, стоящее в правой части (1.2), представляет реакцию жидкости на погружающееся в нее тело (силу удара), причем первые два слагаемых характеризуют инерционное воздействие (реакция идеальной жидкости), а вектор R является реакцией реальной (вязкой) жидкости.

Таким образом, для нахождения силы удара нам необходимо знать изменение во времени скорости движения, присоединенные массы и скорость их изменения, а также гидродинамическое воздействие вязкой жидкости.

В общем случае тело может приводняться под различными углами к поверхности воды. Причем поверхность воды не обязательно горизонтальна, приводнение возможно на взволнованную поверхность. Рассмотрим частный случай приводнения, изображенный на рисунке