Разработка системы принятия решения iелью разведения двух летательных аппаратов

Дипломная работа - Транспорт, логистика

Другие дипломы по предмету Транспорт, логистика



?. Расчеты показывают, что для решения задачи предупреждения столкновений с требуемой надежностью каждое из технических средств, используемых в этих системах, должно иметь чрезвычайно высокую надежность, обеспечение которой является весьма сложной и дорогостоящей задачей. Кроме того, воздушное пространство над труднодоступными для наблюдения районами и просторами океана, занимающими 4/5 земной поверхности, все равно не будет находиться в. зоне действия подобной системы. В связи с этим в настоящее время для решения задачи предупреждения столкновений считается технически и экономически целесообразным дополнить систему УВД специальной бортовой системой предупреждения столкновений самолетов в воздухе (СПС), способной автономно, независимо от системы УВД, обеспечить безопасное расхождение самолетов при возникновении угрозы столкновения. Бортовые СПС по принципу действия являются радиотехническими системами, выполняющими измерение взаимных координат и параметров движения объектов, находящихся в окружающем защищаемый самолет воздушном пространстве, расчет вероятности возникновения угрозы столкновения и обмен информацией по радиоканалам для выработки взаимно координированных команд на маневры уклонения.

В процессе полета при возникновении ситуаций, когда траектория проходит в опасной близости с другим летательным аппаратом (ЛА), либо в области связанной с риском иного рода (шторм, горы и т.д.), системе управления (СУ) необходимо принимать оперативные решения, выбирая один из нескольких возможных вариантов управления ЛА. Интеллектуальная система (ИС) Маневр разрабатывается для уменьшения ошибок управления в экстремальных ситуациях, при дефиците времени на принятие решения, а также на этапе планирования курса iелью избежания экстремальных ситуаций. В пилотируемых ЛА ИС Маневр выдает рекомендации, помогая летчику (оператору) принять правильное решение, и в случае необходимости берет управление на себя. При использовании в беспилотных ЛА ИС самостоятельно принимает решения по управлению.

Основной проблемой формирования ИС подобного типа, в частности в условиях внезапного возникновения опасных ситуаций, является обеспечение способности ИС принимать обоснованные решения в реальном масштабе времени.

В работе показано, что возможности ИС ограничены необходимостью выполнения условии физической реализуемости и работоспособности системы. При выполнении этих условий, для выбора соответствующей процедуры принятия решений, предлагается использовать критериальную функцию, учитывающую значения частных показателей качества эффективности полета, Изменение весовых коэффициентов при частных показателях качества позволяет оперативно корректировать допустимую степень риска при оперативном выборе управлений.

Известные планирующие системы (планировщики) ориентированы в основном на стратегическое планирование, например, на этапе предполетной прокладки маршрута ЛА. В этих системах время принятия решения не согласуется с условиями физической реализуемости и работоспособности, что может привести к несвоевременному принятию решения (запаздыванию) при внезапном возникновении опасной ситуации. Предлагаемый подход расширяет возможности существующих ИС, позволяя принимать обоснованные решения в зависимости от конкретных условий (в частности, дефиците времени) и возможного изменения стратегических и тактических целей полета. Ожидается, что использование подобных систем на пилотируемых и беспилотных ЛА существенно повысит эффективность и безопасность полетов.

2. Условия физической реализуемости и работоспособности ИС в реальном масштабе времени

Для оценки областей возможного применения ИС необходимо определить условия, при которых ИС не может обеспечить принятие решений в реальном масштабе времени. Общее время разрешения q-й опасной ситуации (ОС) представим в виде Тс(q) = Тp(q) + Тy(q), где Тp(q) - время принятия решений и передачи команд управления в систему управления (СУ), Ту(q) - время реакции контура управления от момента получения команд управления до завершения требуемого маневра объекта (ЛА). Очевидно, что Ту(q) зависит от динамических характеристик контура управления и ограничивает возможности успешного разрешения ОС. При Ту(q) >= Тф(q), где Тф(q) - фактическое время, оставшееся на успешное разрешение q-й ОС с момента обнаружения опасности, не остается времени на принятие решения и реализацию соответствующего управления, поэтому этот процесс является физически нереализуемым. Следовательно, необходимым условием физической реализуемости процесса (разрешения q-й ОС) является Тф(q) >= Тс(q) или

Тф(q)>Ту(q). (1.1)

Будем считать, что для пилотируемого ЛА общее время, необходимое для принятия и передачи решения в СУ, равно

Тр(q) = Тис(q) + То(q),

где Тис(q) - время принятия решения ИС, То(q) - время принятия решения оператором (согласование решения), включающее также время восприятия информации оператором, время передачи(ввода) информации оператором в СУ.

Для беспилотного ЛА Тр(q) = Тис(q),пренебрегая временем ввода информации в СУ. Возможность реализовать работоспособную ИС в конкретной q-й ОС определяется необходимым условием: Тр.ф(q) > 0, где Тр.ф(q) - фактическое время, оставшееся на принятие решения ИС. Таким образом, необходимо, чтобы для пилотируемого ЛА выполнялось условие Тр.ф(q) = Тф(q) - Ту(q) - То(q) > 0, а для беспилотного ЛА - условие Тр.ф(q) = Тф(q) - Ту(q) > 0.

Пусть для разрешения