Разработка методики изучения темы "Энтропия" с использованием информационных технологий

Дипломная работа - Физика

Другие дипломы по предмету Физика

?опии характерна шкала абсолютных значений, в основе которой лежит тепловая теорема Нернста и постулат Планка (третий закон термодинамики).

Вопрос о поведении термодинамических систем вблизи абсолютного нуля температур возник в связи с так называемой тепловой теоремой Нернста (1906 г.). Эта теорема вместе с примыкающими к ней теоретическими положениями составляет содержание третьего начала термодинамики, имеющего важное общее значение в физике и химии. Практическая ценность этого начала состоит в том, что оно вносит определенность в численные значения термодинамических функций. Известно, что в выражение для энтропии входит неопределенная постоянная интегрирования, благодаря чему нельзя непосредственно найти абсолютную величину энтропии, хотя в приложениях важно вычислять изменение энтропии и постоянная интегрирования нас не интересует. Однако численное значение самой энтропии необходимо для вычисления других термодинамических функций, куда входит произведение TS, например в выражение свободной энергии, и тогда неопределенность энтропийной постоянной приводит к затруднениям при расчете. Достаточно вычислить абсолютное значение энтропии хотя бы в одном частном случае и тогда мы в состоянии найти энтропию в других условиях, так как постоянную интегрирования можно будет рассчитать, зная зависимость 5 от параметров состояния.

Эта задача решается с помощью третьего начала термодинамики. Непосредственно теорема Нернста была создана им в связи с обсуждением вопроса о химическом сродстве при низкой температуре. Понятие химического сродства введено для характеристики способности веществ химически реагировать друг с другом. Уже давно было замечено, что одни вещества легко вступают в реакцию между собой, другие реагируют плохо или вовсе химически не взаимодействуют. Естественно возникал вопрос о том, что считать мерой химического сродства. Так как при химических реакциях часто наблюдается выделение теплоты, то Томсен и Бертло высказали как общий принцип, что количество выделяющейся теплоты реакции должно служить мерой химического сродства, иными словами, чем больше выделяется теплоты, тем больше сродство между реагирующими веществами и, значит, из всех возможных реакций данного вещества с другими будет протекать та реакция, при которой будет выделяться больше теплоты.

Однако с принципиальной точки зрения это утверждение следует считать ошибочным. Во-первых, в принципе Томсена и Бертло рассматриваются только реакции экзотермические, т. е. идущие с выделением тепла, между тем как хорошо известны также эндотермические реакции, при которых теплота не выделяется, а поглощается. Для них вообще принцип Томсена-Бертло непригоден. Во-вторых, количество теплоты при химической реакции и само направление последней зависят от многих условий и в первую очередь от температуры, так что величина сродства может меняться. Наконец, установлено, что многие реакции идут не до конца и в системе наступает химическое равновесие. Упомянутый принцип неприменим и для таких случаев.

Таким образом, для установления меры сродства необходимо указать условия протекания реакции и иметь в виду переход в состояние равновесия. В таком случае целесообразно применять общие условия равновесия термодинамических систем. Наиболее просто выяснить меру сродства, если система реагирующих веществ помещена в термостат и поддерживается при постоянной температуре T= const. Далее условия реакции будут определены, если система находится в твердой оболочке, т. е. поддерживается при постоянном объеме V=const. Другой случай соответствует условию, когда изотермическая система находится при постоянном внешнем давлении. Если в системе при T = const и V = const протекает химическая реакция и затем наступает равновесие, то, как мы знаем (стр. 168), свободная энергия системы убывает и стремится к минимуму. Пусть свободная энергия системы до реакции есть Fi и свободная энергия после установления равновесия есть F2 тогда ясно, что процесс начнется и будет идти, если F-F2>0, причем чем больше эта разность, т. е. чем больше убыль свободной энергии, тем быстрее пойдет реакция. Следовательно, убыль свободной энергии, т. е. -FV,T, должна служить необходимым и достаточным критерием химического сродства для изотермических реакций при постоянном объеме; при этом имеется в виду максимальная убыль, соответствующая максимальной работе. Как мы знаем, максимальная работа Wv равна убыли свободной энергии изотермического процесса. Здесь имеется в виду работа не за счет расширения. Итак,

 

Wv = -A FVT(23)

 

Поэтому можно сказать, что мерой химического сродства является также максимальная работа.

Аналогичный результат мы получаем для изотермических реакций при постоянном давлении. В этих условиях термодинамический потенциал Z стремится к минимуму.

Для процессов при постоянном объеме выполняется уравнение Гиббса-Гельмгольца (стр. 142):

 

(24)

откуда следует, что

(25)

 

Величина F в этом уравнении и является по Вант-Гоффу мерой химического сродства в реакциях при постоянном объеме. Мы видим, что изменение свободной энергии AF не равно изменению внутренней энергии AU системы, а отличается от последнего на величину, зависящую от температуры и от производной. Вместо свободной энергии можно ввести максимальную работу. Тогда уравнение (23) переходит в форму:

 

(26)

 

В этом выражении мерой сродства яв?/p>