Разложение рациональной дроби на простейшие.
Реферат - Математика и статистика
Другие рефераты по предмету Математика и статистика
Федеральное агентство по образованию
Государственное общеобразовательное учреждение
высшего профессионального образования
Башкирский Государственный Университет
Нефтекамский филиал
Кафедра МиПОВМ
Курсовая работа
Тема: Разложение рациональной дроби на простейшие.
Выполнил студент
группы М-31
Остапов А. Б.
Принял:
Вильданов А. Н.
Нефтекамск 2006
Содержание.
- Введение.
- Часть 1. “Теоретическая часть к курсовой работе”.
- Часть 2. “Практическая часть к курсовой работе”.
- “Реализация метода простых коэффициентов в Maple”.
- “Реализация метода простых коэффициентов на Delphi”.
- Заключение.
- Список литературы.
Введение.
Этот вопрос уже много раз изучен и рассмотрен. Казалось бы, что может быть проще для современного математика, чем разложить рациональную дробь на простейшие, разве что элементарные алгебраические операции. Однако, применение этого метода существенно облегчает жизнь не будь метода некоторые задачи было бы очень проблематично решить, а некоторые вообще не решались.
Основные операции, в которых я применял этот метод, были:
а) Разложение рациональной дроби на простейшие с целью дальнейшего интегрирования получившихся элементарных дробей (Матем. анализ);
б) Разложение рациональной дроби на простейшие для использования в процессе преобразования Лапласа, что иногда серьезно ускоряет нахождение решения различных уравнений и систем уравнений в частных производных (Курс уравнений мат. физики).
Разложение это необходимость. Без нее нельзя обходиться, тем более на современном этапе развития математической мысли. Об этом и пойдет речь в моей курсовой работе.
Часть 1.
“Теоретическая часть к курсовой работе”.
Рациональной дробью назовем отношение двух алгебраических многочленов с вещественными коэффициентами:
Дробь называется правильной, если степень P(x) меньше степени Q(x), и неправильной в противном случае. Простейшей называется правильная дробь, знаменатель которой представляет собой неприводимый (значит не имеющий корней) над некоторым полем (в нашем случае поле действительных чисел) многочлен.
Для простых (правильных) дробей с действительными коэффициентами справедлива следующая теорема о разложении на сумму простейших:
Пусть (1) правильная рациональная дробь с действительными коэффициентами, знаменатель которой имеет вид:
тогда для этой дроби справедливо следующее разложение на сумму простейших дробей:
где индексированные переменные B, M, N некоторые вещественные постоянные (может быть, равные нулю).
Для определения конкретных значений сих коэффициентов следует привести равенство к общему знаменателю и сравнить коэффициенты при одинаковых степенях x в числителе. Т.е. по сути дела решить систему линейных уравнений. Используется эта конструкция по большей части при вычислении интегралов, т.к. таким образом интеграл произвольной рациональной функции сводится, по сути дела, к сумме табличных интегралов.
Рациональной дробью R(x) называется дробь, числителем и знаменателем которой являются многочлены, т. Е. всякая дробь вида:
Если степень многочлена в числителе больше или равна степени многочлена в знаменателе (n?m), то дробь называется неправильной. Если степень многочлена в числителе меньше степени многочлена в знаменателе (n?m), то дробь называется правильной.
Всякую неправильную рациональную дробь можно представить в виде суммы многочлена (целой части) и правильной рациональной дроби (это представление достигается путем деления числителя на знаменатель по правилу деления многочленов):
где R(x) многочлен-частное (целая часть) дроби ; Pn(x) остаток (многочлен степени n < m).
Интегрирование простейших дробей. Простейшей дробью называется правильная рациональная дробь одного из следующих четырех типов:
1)
2) (n?2);
3)
4) (n?2).
Здесь А, a, p, q, M, N действительные числа, а трехчлен не имеет действительных корней, т. е. p2/4-q < 0.
Простейшие дроби первого и второго типов интегрируются непосредственно с помощью основных правил интегрального исчисления:
Интеграл от простейшей дроби третьего типа приводится к табличным интегралам путем выделения в числителе дифференциала знаменателя и приведения знаменателя к сумме квадратов:
Интегрирование рациональных дробей.
Разложение рациональной дроби на простейшие дроби. Всякую правильную рациональную дробь можно представить в виде суммы конечного числа простейших рацион