Развитие познавательного интереса на математическом кружке для 5-6 классов

Дипломная работа - Педагогика

Другие дипломы по предмету Педагогика



Вµтной вершиной.

1). В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы каждый телефон был соединен ровно с пятью другими?

Решение: Допустим, что такое соединение телефонов возможно. Тогда представим себе граф, в котором вершины обозначают телефоны, а ребра - провода, их соединяющие. Подсчитаем, сколько всего получится проводов. К каждому телефону подключено ровно 5 проводов, т.е. степень каждой вершины нашего графа - 5. Чтобы найти число проводов, надо просуммировать степени всех вершин графа и полученный результат разделить на 2 (т.к. каждый провод имеет два конца, то при суммировании степеней каждый провод будет взят 2 раза). Но тогда количество проводов получится разным155/2=37,5. Но это число не целое. Значит наше предположение о том, что можно соединить каждый телефон ровно с пятью другими, оказалось неверным.

Ответ. Соединить телефоны таким образом невозможно.

2). В государстве 100 городов к из каждого города выходит 4 дороги. Сколько всего дорог в государстве.

Решение. Подсчитаем общее количество выходящих городов дорог - 100.4 = 400. Однако при таком подсчете каждая дорога посчитана 2 раза - она выходит из одного города и входит в другой. Значит всего дорог в два раза меньше, т.е. 200.

3). Обрисовать фигуру, не отрывая карандаша от бумаги и не проводя два раза по одной линии. Обозначьте точки пересечения, в скобках укажите, сколько линий выходит из данной точки. Если число линий четное - то вершина четная, если число линий нечетное - то вершина нечетная. Пометить вершину, с которой надо начинать обход.

1. 2. 3.

.

Все ли фигуры у вас получилось нарисовать? (все, кроме фигуры №1). Как вы думаете почему? Как это связано с количеством четных и нечетных вершин?

Сделаем вывод:

Если все вершины графа четные, то нарисовать фигуру возможно, и начать можно с любой вершины (№4).

Если же из этих вершин две нечетные, то нарисовать фигуру можно, но только начинать необходимо в одной из этих двух нечетных вершин, а заканчивать во второй нечетной вершине (№2, №3).

Если в графе более двух нечетных вершин, то нарисовать фигуру невозможно (№1).

Вопрос о разрешимости таких задач входит в теорию графов. Впервые ее исследовал Л. Эйлер в 1736г., решая задачу о Кенигсбергских мостах.

4). Город Кенигсберг расположен на берегах и двух островах реки Преголя. Части города соединены между собой семью мостами. В воскресные дни горожане совершили прогулки по городу. И возник вопрос, можно ли выбрать такой маршрут, чтобы пройти по каждому мосту только один раз и вернуться в начальную точку пути?

Попробуем разрешить эту задачу. Но сначала составим план города, как это сделал Л. Эйлер. Он обозначил части города точками (вершины), а переходы по мостам - линиями (ребра). Получил граф.

Ответ: обход по всем мостам только один раз невозможен, т.к. все вершины графа нечетные.

Поэтому графы, которые можно нарисовать указанным способом, называются Эйлеровыми графами.

]">[]

Задачи для самостоятельного решения:

1). Алина решила маме на день рождения подарить букет цветов (розы, тюльпаны или гвоздики) и поставить их или в вазу или в кувшин. Сколькими способами это можно сделать?

2). Ранним утром Миша Маша, Андрей обменялись приветствиями каждый с каждым. Сколько всего было приветствий. Решите задачу с помощью графа. Нарисуй граф в рабочей тетради.

3). В квартирах №1,2,3 жили три друга: Айдар, Тима и Саша. Известно, что в квартирах №1 и 2 жил не Айдар. Тима жил не в квартире №1. В какой квартире жил каждый из друзей.

4). Может ли в государстве, в котором из каждого города выходит ровно 3 дороги, быть ровно 100 дорог?

5). Какие буквы русского алфавита можно нарисовать одним росчерком?

6). Муха забралась в банку из-под сахара. Банка имеет форму куба. Сможет ли муха последовательно обойти все 12 ребер куба, не проходя дважды по одному ребру. Подпрыгивать и перелетать с места на место не разрешается.

10. Круги Эйлера

1.">Примерное содержание сообщения учащегося о Леонарде Эйлере.

2.Рассказ учителя о кругах Эйлера.

Очень часто бывает так, что решение задачи помогает найти рисунок. Использование рисунка делает решение задачи простым и наглядным.

Рассмотрим такую задачу.

1). В классе 35 учеников. Из них: 19 ребят занимают в математическом кружке, 10 - в биологическом, 9 ребят не посещают эти кружки. Сколько биологов увлекаются математикой?

Решение. Для решения задачи изобразим в виде "кругов" учащихся,

занимающихся математикой и биологией.

Обозначим их буквами М и Б соответственно. Круги М и Б содержатся в прямоугольнике, которым мы изображаем всех учащихся класса.

Нам очевидно, что общая часть кругов М и Б состоит из тех ребят, которые одновременно увлекаются и математикой, и биологией. Теперь давайте посчитаем. Всего внутри прямоугольника 35 ребят. Внутри двух маленьких кругов М и Б будет 35-9= 26 ребят, поскольку нам известно, что 9 ребят не посещают кружки. Внутри "математического" круга 19 ребят, значит, в той части "биологического" круга, которая расположена вне круга М, находится 26-19= 7 биологов, не посещающих математический кружок. Остальные биологи, их 10-7= 3, находятся в общей части кругов МБ. Таким образом, 3 биолога увлекаются математикой.

Изображение