Пропускная способность автодорог
Информация - Производство и Промышленность
Другие материалы по предмету Производство и Промышленность
диане, в частности алгоритм направленного древовидного поиска, приближенный алгоритм Гейтца и Барта, и даже алгоритм решения данной задачи как задачи линейного программирования. Данные алгоритмы приведены здесь не будут.
Результатом решения задачи о р- медиане графа будут являться множество S , состоящее из р вершин, принадлежащих графу Х, являющихся точками оптимального положения торговых баз и складов. Также для каждой вершины из S будет задано множество вершин Н, "прикрепленных" к данной. Множество Н можно интерпретировать как множество пунктов обслуживания данной базой.
Замечания.
Исходя из специфики города , а также пунктов доставки, как объекта, можно предположить, что все элементы матрицы Х будут = 1 единице. Способ построения графа Х поэтому приведен лишь для пояснительных целей.
Если быть точнее, распределение вершин, являющееся результатом работы данного метода будет оптимальным только для перемещения транспорта от базы до пунктов назначения. Речь идет о возможной неоптимальности пути от пункта назначения до базы (возвращение). В случае, если пути из каждой точки i в точку j и пути из j в i(обратно) эквивалентны по весу, то сумма весов путей туда и обратно для всех баз и пунктов назначения будут минимальны. Если же данное условие не выполняется (участки с односторонним движением), то сумма весов обратно для всех баз и пунктов назначения может не быть минимальной.
Вычислительные аспекты алгоритмов решения задач о р- медиане могут быть существенно улучшены, если число вспомогательных вершин K ограничить. Но применять такой "метод ускорения расчетов" следует только в случае достаточно плотного скопления пунктов потребления, в силу того, что решение задачи о р- медиане дает в качестве ответа одну из введенных в исходный граф Х вершин, то есть склад должен находиться в каком-либо пункте потребления или опорной точке. В случае больших расстояний между пунктами назначения суммарный путь для К=0 может быть существенно длиннее пути с заранее расставленными вспомогательными вершинами. Один из возможных вариантов действий в этом случае будет расстановка вспомогательных вершин в областях, где пункты достаточно редки и в местах, удобных для строительства баз.
Если в качестве весов путей брать время прохождения пути автотранспортом, оптимальное распределение будет минимизировать время всех перевозок. При таком выборе веса пути простои в пробках будут минимизированы. Если в качестве веса пути была выбрана длина соответствующих маршрутов, то будет минимизировано суммарное расстояние перевозок.