Проектирование электропривода тепловизионной системы сопровождения

Дипломная работа - Разное

Другие дипломы по предмету Разное



Министерство науки и образования Российской Федерации

Тульский государственный университет

Кафедра Проектирование автоматизированных комплексов

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

по направлению 550200 Автоматизация и управление

на тему: Проектирование электропривода тепловизионной системы сопровождения.

студента группы. 120901

Семёнова Сергея Анатольевича

Руководитель ВКР от университета: доц., к.т.н. __________________Никитин В.А.

Тула 2004

Реферат

Пояснительная записка к ВКР: с, рисунков, источников.

Ключевые слова: тепловизионная система, автосопровождение, электропривод, горизонтальное наведение, кинематические параметры, исполнительный двигатель, математическая модель, синтез, трехпозиционное управление, автоколебания, моделирование, частотные характеристики, переходный процесс, исполнительный механизм.

В данной выпускной квалификационной работе спроектирован замкнутый по скорости исполнительный привод горизонтального наведения тепловизионной системы автоматического сопровождения целей типа вертолёт и танк, размещенный на неподвижном основании. Проведены раiёты кинематических и энергетических характеристик исполнительного механизма, выбран исполнительный двигатель постоянного тока ДП 90-60, расiитано передаточное число редуктора, параметры математической модели. Проведён синтез трехпозиционный автоколебательной системы управления привода и определены основные динамические характеристики методом математического моделирования. Разработана кинематическая схема исполнительного механизма и расiитаны её основные конструктивные параметры.

Содержание.

Введение.4

1. Проектирование электропривода тепловизионной системы сопровождения9

1.1. Раiет кинематических характеристик9

Выбор режимов работы привода9

1.2 Раiет энергетических характеристик исполнительного механизма13

1.3 Выбор передаточного числа редуктора. Определение располагаемых16

кинематических характеристик.16

1.4 Раiет зон сопровождения цели.18

1.5 Раiет параметров матмодели исполнительного двигателя и статических характеристик.20

1.6 Синтез замкнутого по скорости привода и определение его характеристик24

1.6.1 Выбор закона управления.24

1.6.2 Результаты математического моделирования.28

2. Разработка кинематической схемы редуктора.32

Заключение.39

Список литературы41

ПриложениетАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж...42

Введение.

Назначение и задачи, решаемые ПТРК. Выбор типа системы автосопровождения цели.

Важная роль в условиях современного боя отводится танкам. Танк по праву iитается ударной силой наземных войск. Учитывая решающую роль танков и других объектов бронетанковой техники в обеспечении успеха наземного боя, в армиях всех стран уделяют большое внимание разработке и совершенствованию различного рода противотанковых средств, которыми в настоящее время вооружаются многие рода войск: бронетанковые, ракетные, авиационные, пехотные, десантные и др.

При всём многообразии противотанковых средств в качестве основного оружия используются противотанковые ракетные (ПТРК) и ракетно-артиллерийские комплексы, основными преимуществами которых являются большая дальность стрельбы (4-6 км), высокая бронепробиваемость, гибкость основных средств, небольшие габаритные размеры, несложность ракет и пусковых установок.

Постоянная модернизация бронетанковой техники, направленная на повышение её защиты (увеличение толщины брони, оснащение динамической защитой, средствами постановок пассивных и активных оптических и радиолокационных помех, ночными прицелами), увеличение дальности прицельной стрельбы танковых пушек поставили перед разработчиками ПТРК задачи сокращения времени обнаружения цели, момента открытия огня, увеличения дальности стрельбы, помехозащищенности, обеспечения всесуточности и всепогодности применения.

Выполнение указанных требований в одном образце невозможно технически и нецелесообразно с экономической точки зрения. Поэтому для противотанковых комплексов III поколения рекомендуется использовать вместо дорогостоящего в реализации принципа тАЬвыстрелил-забылтАЭ, который ранее iитался основным признаком систем III поколения, принцип тАЬвижу-стреляютАЭ при наблюдении за целями в оптический или тепловизионный прицел, позволяющий обеспечить независимость характеристик обнаружения различных целей от их сигнатур* в оптическом и ИК диапазонах электромагнитных волн.

Использование лазерно-лучевой системы управления с большим энергетическим потенциалом и тепловизионного прицела обеспечивает практически полную защищенность от активных и пассивных (боевые дымы) оптических помех.

Пассивный характер работы оптико-механических и оптико-электронных (тепловизионных) систем обнаружения и сопровождения цепей повышает скрытность, помехозащищенность и, как следствие, выживаемость комплексов на поле боя.

Тепловизионная система автосопровождения: цели, назначение, состав, режим работы.

Для комплекса, работающего на неподвижном основании, тепловизионная система автосопровождения цели может быть постро