Применение дистанционного обучения при изучении курса сферической геометрии
Дипломная работа - Математика и статистика
Другие дипломы по предмету Математика и статистика
дранта, то мы продолжим дуги СА и СВ за точки А и В до их вторичного пересечения в точке С`, диаметрально противоположной точке С. Гипотенуза АВ треугольника АВС будет и гипотенузой треугольника АВС`, в котором в каждом из катетов меньше квадранта. Следовательно, в этом случае гипотенуза АВ меньше квадранта.
В:
1. Доказать, что два сферических треугольника равны по трём углам.
2. Дан треугольник АВС и полярный к нему А?В?С?. Доказать, что треугольник, полярный к треугольнику А?В?С?, совпадёт с треугольником АВС.
3. Найти максимум или минимум площади сферического треугольника, в котором известна сторона и угол и соответствующая высота.
4. Доказать, что:
1) если медиана сферического треугольника равна квадранту (четверть окружности), то она одновременно служит биссектрисой того угла, через вершину которого она проходит (не зависимо будет ли данный треугольник равнобедренным или нет), и равна полусумме сторон, прилежащих к этому углу.
2) Если медиана меньше квадранта, то она образует с большей из двух сторон АВ и АС, между которыми она проходит, угол меньший, чем с другой стороной; она больше (за исключением случая равнобедренного треугольника) биссектрисы угла ВАС, считаемой от вершины до противоположной стороны, и меньше полусуммы сторон АВ и АС, которая в свою очередь меньше квадранта; если медиана больше квадранта, то имеют место противоположные неравенства. (Вторая часть этого предложения сводится к первой путём замены вершины А, из которой выходит медиана, диаметрально противоположной точкой.
3) Рассмотреть обратные предложения. Одно из них гласит: если медиана сферического треугольника является одновременно биссектрисой угла, из вершины которого она выходит, то или она равна квадранту, или треугольник равнобедренный.
Решение:
1) Пусть медиана AD сферического треугольника АВС (рис.4) равна квадранту. Отложим на продолжении дуги AD за точку D дугу DE, равную AD. Тогда ?ABD =?ECD, так как ADB=EDC; BD=CD и AD=ED.
Отсюда BAD=CED (1)
CE=AB (2)
Так как дуга ADE равна половине большой окружности, то точка Е диаметрально противоположна точке А и точки А, С и Е лежат на одной большой окружности, так что CED=CAD. Из сравнения этого равенства с равенством (1) вытекает, что BAD=CAD, так что AD есть биссектриса ВАС.
Далее, в силу (2), имеем
AB+AC=EC+AC=ACE=ADE=2AD.
Итак, если медиана сферического треугольника равна квадранту, то она одновременно служит биссектрисой того угла, через вершину которого она проходит, и равна полусумме сторон, прилежащих к этому углу.
Рис.4 Рис.5
2) Пусть далее медиана AD сферического треугольника ABC (рис.5) меньше квадранта. Отложим опять на продолжении дуги AD за точку D дугу DE, равную AD. Тогда ?ABD = ?ECD будут равны (см. 1) ), и будут верны равенства (1) и (2). В этом случае дуга ADE=2AD будет меньше половины окружности большой окружности, и потому точка D будет лежать на стороне АЕ сферического ?АСЕ. Если в данном треугольнике АВ>АС, то в ?АСЕ будем иметь (в силу равенства ЕС=АВ) СЕ>АС. Отсюда следует, что CAD>CED (см. 2 зад. 7 части А), так что и силу равенства (1) CAD>BAD. Итак, если медиана треугольника меньше квадранта, то она образует с большей из двух сторон, между которыми она проходит, угол меньший, чем с другой стороной.
Далее в этом случае имеем ADE = 2AD<AC + CE= AB+АС, так что если медиана треугольника меньше квадранта, то она меньше полусуммы сторон, между которыми она проходит.
Пусть, как и выше, медиана АD сферического ? ABC (рис. 6) меньше квадранта и пусть для определенности сторона АВ > АС. В таком случае точка А отлична от полюсов большого круга ВС, и через неё проходит (теорема 4) единственная большая окружность IAH, перпендикулярная к ВС. Обозначим через I и H основания меньшей и большей перпендикулярных дуг AI и АН, опущенных из точки А на большую окружность ВС (теорема 5). Пусть далее К и L середины дуг, на которые точки I и H делят большую окружность ВС, так что каждая из дуг IK=КН = HL= LI равна квадранту. При этом точки К и L будут, очевидно, полюсами большой окружности IАН, и дуги AK = AL также будут равны квадранту.
Так как медиана АD по предположению меньше квадранта, то по теореме о сравнительной длине перпендикулярных и наклонных дуг (теорема 5) точка D лежит (рис. 6 и 7) между точкой I и одной из точек К и L, скажем К (точка D не может совпадать с I, так как в последнем случае треугольник ABC был бы равнобедренным). Далее, так как сторона ВС заведомо меньше половины большого круга, то дуга DB меньше квадранта. В то же время дуга DКН более квадранта, и потому точка Н не лежит на дуге ВС. Так как BAD САI, так что точка М лежит между В и I. Итак, в обоих случаях точки H,B,D,M и I следуют на большой
Рис.6 Рис.7
окружности ВС в том именно порядке, как они здесь перечислены. Следовательно, имеем (в силу теоремы о длине наклонных дуг, теорема 5) AD > AM. Итак, если медиана AD меньше квадранта, то она больше биссектрисы AM угла ВАС.
Пусть в том же предположении, что медиана AD меньше квадранта, Во - точка, диаметрально противополо?/p>