Аналіз теорії цифрових автоматів

Курсовой проект - Компьютеры, программирование

Другие курсовые по предмету Компьютеры, программирование

 

 

 

 

 

 

 

 

 

 

Аналіз теорії цифрових автоматів

(курсова робота)

Содержание

 

Двійкова арифметика

Системи числення з довільною основою

Мшан системи числення

Форма з фіксованою крапкою

Форма з плаваючою крапкою

Прямий, зворотній та доповнюючий коди чисел

Поняття про булеві функції

Аналітичне представлення булевих функцій

Мінімізація булевих функцій

Метод квайна-мак-класкі

Висновок

Висновок

Література

Теорія цифрових автоматів закладає теоретичні основи роботи компютерної техніки. У даній курсові роботі проводиться аналіз математичного підгрунтя даної дисципліни.

Двійкова система числення

Двійкова позиційна система числення

Позиційна система числення з основою 2 називається двійковою. Для запису чисел в двійковій системі використовуються лише дві цифри: 0 і 1. Число два, тобто основа системи подається як 102.

Зручність системи - в її надзвичайній простоті.

Недолік - основа системи мала, тому для запису навіть не дуже великих чисел треба використовувати багато знаків.

Переведення числа з двійкової системи числення в десяткову та з десяткової у двійкову.

Нам уже відомо, що число N, записане в системі числення з основою p як (akak-1…a1a0) p, рівне N=ak•pk+ak-1•pk-1+…+a1•p+a0

Тому:

 

10012=1•23+0•22+0•21+1•20=8+0+0+1=910

1000012=1•25+0•24+0•23+0•22+0•21+1•20=32+0+0+0+0+1=3310

 

Щоб перевести число із десяткової системи числення у двійкову, треба послідовно ділити десяткове число і його десяткові частки на основу двійкової системи, тобто на число 2. Ділення продовжується до тих пір, поки одержана частка не буде менша основи нової системи числення, тобто 2.

1 |40|2_

0 |20|2_

0 |10|2

0|5|2

1|2|2

0|1

 

Отже число 8110 в двійковій системі: 10100012

Переведемо число 100:

 

100|2_

0 |50|2_

0 |25|2_

1 |12|2

0|6|2

1|3|2

1|1

 

Отже, (100) 10= (1100100) 2

З переводом чисел з десяткової системи одиниць у двійкову приходиться постійно мати справу при роботі на ЕОМ.

Окрему позицію в записі числа називають розрядом. Число розрядів - розрядність (довжина). Номер позиції - номер розряду. Довжина числа - це к-сть позцій (розрядів) в записі числа. В технічному розумінні це довжина розрядної сітки.

Чим менша основа системи, тим більша довжина числа. Якщо довжина розрядної сітки n, то: Aq max=qn-1; Aq min= - (qn-1);

Діапазон представлення чисел в заданій системі:

 

Aq max ?ДП? Aq min.

Двійкова арифметика

 

Арифметичні дії в двійковій системі (двійковій арифметиці) виконуються за звичайними для позиційних систем правилами (алгоритмами), які нам відомі з десяткової арифметики, але при цьому, звичайно, використовуються таблиці додавання і множення двійкової системи.

Таблиця додавання

 

0+0=0

0+1=1

1+0=1

1+1=102

 

(додавання нуля не міняє числа, а один плюс один буде два).

Таблиця множення

0•0=0

0•1=0

1•0=0

1•1=1

(число, помножене на нуль, є нуль; множення на один не міняє числа).

Додавання. Додавання багатозначних чисел відбувається так само, як і в десятковій системі, тобто порозрядно, починаючи з молодшого.

 

1011012 - 1 доданок

+ 101002 - 2 доданок

10000012 - сума

 

Перевіримо правильність наших обчислень:

1011012=1•25+0•24+1•23+1•22+0•21+1•20=32+0+8+4+0+1=4510

101002=1•24+0•23+1•22+0•21+0•20=16+0+4+0+0=2010

4510+2010=6510

10000012=1•26+0•25+0•24+0•23+0•22+0•21+1•20=64+0+0+0+0+0+1=6510

 

Віднімання

 

0-0=0

1-0=1

1-1=0

102-1=1

Знайдемо: 1110101112-11000012

 

1110101112

- 11000012

1011101102

 

Крапки, поставлені над деякими розрядами, показують, що в двійковій системі одиниця відміченого розряду роздроблюється на дві одиниці вищого розряду.

Множення

 

111012•11012

111012 - множник

11012 - множник

11101 - множене

+11101 - множене, зсунуте на 2 розряди вліво

11101 - множене, зсунуте на 3 розряди вліво

1011110012 - добуток

Перевірка:

 

111012=1•24+1•23+1•22+0•21+1•20=16+8+4+1=2910

11012=1310; 29•13=37710

1011110012=1•28+0•27+1•26+1•25+1•24+1•23+0•22+0•21+1•20=256+0+64+32+16+8++0+1=37710.

 

Отже, в двійковій арифметиці при множенні не потрібна таблиця множення. Не треба знаходити добутки першого множника на значення послідовних розрядів другого множника, так як значення цих розрядів або 1 або 0.

Достатньо записати значення першого множника одне під одним із зсувом на один розряд; у випадку рівності якого-небудь розряду другого множника нулю, його зсувають на два розряди.

 

11011112

1011012

1101111

1101111

1101111

1101111__

10011100000112

 

Системи числення з довільною основою

 

Ми розглянули алгоритм переводу чисел з двiйково системи числення в десяткову i навпаки - з десятково в двiйкову. Алгоритми залишаться цiлком аналогiчними, якщо замiсть двiйково системи числення взяти будь-яку iншу.

Нехай, наприклад, деяке число записане в вiciмковiй системi числення. Це значить, що цифри в записі цього числа кофiцiєнти в його розкладi по степенях числа 8:

 

(anan-1... a1a0, a-1a-2. .) 8 =an*8n+an-1*8n-1+... +a1*8+a0+a-1*8-1+...

 

Для того,щоб отримати зображення цього числа в десятковiй системi числення, достатньо виконати, користуючись десятковою арифметикою, всi операцi в правiй частинi цього виразу. Приклад. Перевести число (276,54) 8 з вiсiмково систем