Аналіз теорії цифрових автоматів
Курсовой проект - Компьютеры, программирование
Другие курсовые по предмету Компьютеры, программирование
Аналіз теорії цифрових автоматів
(курсова робота)
Содержание
Двійкова арифметика
Системи числення з довільною основою
Мшан системи числення
Форма з фіксованою крапкою
Форма з плаваючою крапкою
Прямий, зворотній та доповнюючий коди чисел
Поняття про булеві функції
Аналітичне представлення булевих функцій
Мінімізація булевих функцій
Метод квайна-мак-класкі
Висновок
Висновок
Література
Теорія цифрових автоматів закладає теоретичні основи роботи компютерної техніки. У даній курсові роботі проводиться аналіз математичного підгрунтя даної дисципліни.
Двійкова система числення
Двійкова позиційна система числення
Позиційна система числення з основою 2 називається двійковою. Для запису чисел в двійковій системі використовуються лише дві цифри: 0 і 1. Число два, тобто основа системи подається як 102.
Зручність системи - в її надзвичайній простоті.
Недолік - основа системи мала, тому для запису навіть не дуже великих чисел треба використовувати багато знаків.
Переведення числа з двійкової системи числення в десяткову та з десяткової у двійкову.
Нам уже відомо, що число N, записане в системі числення з основою p як (akak-1…a1a0) p, рівне N=ak•pk+ak-1•pk-1+…+a1•p+a0
Тому:
10012=1•23+0•22+0•21+1•20=8+0+0+1=910
1000012=1•25+0•24+0•23+0•22+0•21+1•20=32+0+0+0+0+1=3310
Щоб перевести число із десяткової системи числення у двійкову, треба послідовно ділити десяткове число і його десяткові частки на основу двійкової системи, тобто на число 2. Ділення продовжується до тих пір, поки одержана частка не буде менша основи нової системи числення, тобто 2.
1 |40|2_
0 |20|2_
0 |10|2
0|5|2
1|2|2
0|1
Отже число 8110 в двійковій системі: 10100012
Переведемо число 100:
100|2_
0 |50|2_
0 |25|2_
1 |12|2
0|6|2
1|3|2
1|1
Отже, (100) 10= (1100100) 2
З переводом чисел з десяткової системи одиниць у двійкову приходиться постійно мати справу при роботі на ЕОМ.
Окрему позицію в записі числа називають розрядом. Число розрядів - розрядність (довжина). Номер позиції - номер розряду. Довжина числа - це к-сть позцій (розрядів) в записі числа. В технічному розумінні це довжина розрядної сітки.
Чим менша основа системи, тим більша довжина числа. Якщо довжина розрядної сітки n, то: Aq max=qn-1; Aq min= - (qn-1);
Діапазон представлення чисел в заданій системі:
Aq max ?ДП? Aq min.
Двійкова арифметика
Арифметичні дії в двійковій системі (двійковій арифметиці) виконуються за звичайними для позиційних систем правилами (алгоритмами), які нам відомі з десяткової арифметики, але при цьому, звичайно, використовуються таблиці додавання і множення двійкової системи.
Таблиця додавання
0+0=0
0+1=1
1+0=1
1+1=102
(додавання нуля не міняє числа, а один плюс один буде два).
Таблиця множення
0•0=0
0•1=0
1•0=0
1•1=1
(число, помножене на нуль, є нуль; множення на один не міняє числа).
Додавання. Додавання багатозначних чисел відбувається так само, як і в десятковій системі, тобто порозрядно, починаючи з молодшого.
1011012 - 1 доданок
+ 101002 - 2 доданок
10000012 - сума
Перевіримо правильність наших обчислень:
1011012=1•25+0•24+1•23+1•22+0•21+1•20=32+0+8+4+0+1=4510
101002=1•24+0•23+1•22+0•21+0•20=16+0+4+0+0=2010
4510+2010=6510
10000012=1•26+0•25+0•24+0•23+0•22+0•21+1•20=64+0+0+0+0+0+1=6510
Віднімання
0-0=0
1-0=1
1-1=0
102-1=1
Знайдемо: 1110101112-11000012
1110101112
- 11000012
1011101102
Крапки, поставлені над деякими розрядами, показують, що в двійковій системі одиниця відміченого розряду роздроблюється на дві одиниці вищого розряду.
Множення
111012•11012
111012 - множник
11012 - множник
11101 - множене
+11101 - множене, зсунуте на 2 розряди вліво
11101 - множене, зсунуте на 3 розряди вліво
1011110012 - добуток
Перевірка:
111012=1•24+1•23+1•22+0•21+1•20=16+8+4+1=2910
11012=1310; 29•13=37710
1011110012=1•28+0•27+1•26+1•25+1•24+1•23+0•22+0•21+1•20=256+0+64+32+16+8++0+1=37710.
Отже, в двійковій арифметиці при множенні не потрібна таблиця множення. Не треба знаходити добутки першого множника на значення послідовних розрядів другого множника, так як значення цих розрядів або 1 або 0.
Достатньо записати значення першого множника одне під одним із зсувом на один розряд; у випадку рівності якого-небудь розряду другого множника нулю, його зсувають на два розряди.
11011112
1011012
1101111
1101111
1101111
1101111__
10011100000112
Системи числення з довільною основою
Ми розглянули алгоритм переводу чисел з двiйково системи числення в десяткову i навпаки - з десятково в двiйкову. Алгоритми залишаться цiлком аналогiчними, якщо замiсть двiйково системи числення взяти будь-яку iншу.
Нехай, наприклад, деяке число записане в вiciмковiй системi числення. Це значить, що цифри в записі цього числа кофiцiєнти в його розкладi по степенях числа 8:
(anan-1... a1a0, a-1a-2. .) 8 =an*8n+an-1*8n-1+... +a1*8+a0+a-1*8-1+...
Для того,щоб отримати зображення цього числа в десятковiй системi числення, достатньо виконати, користуючись десятковою арифметикою, всi операцi в правiй частинi цього виразу. Приклад. Перевести число (276,54) 8 з вiсiмково систем