Представление о форме предметов как средство развития мышления детей

Информация - Педагогика

Другие материалы по предмету Педагогика

нтов геометрических фигур, дети усваивают то общее, что объединяет фигуры. Ребята узнают, что

одни фигуры оказываются в соподчиненном отношении;

понятие четырехугольника является обобщением таких понятий, как квадрат, ромб, прямоугольник, трапеция и др.;

в понятие многоугольник входят все треугольники, четырехугольники, пятиугольники, шестиугольники независимо от их размера и вида.

Подобные взаимосвязи и обобщения, вполне доступные детям, поднимают их умственное развитие на новый уровень. У детей развивается познавательная деятельность, формируются новые интересы развиваются внимание, наблюдательность, речь и мышление и его компоненты (анализ, синтез, обобщение и конкретизация в их единстве). Все это готовит детей к усвоению научных понятий в школе.

Связь количественных представлений с представлениями геометрических фигур создает основу для общематематического развития детей.

Переход от одного уровня обучения к другому не является самопроизвольным, идущим параллельно биологическому развитию человека и зависящим от возраста. Он протекает под влиянием целенаправленного обучения, которое содействует ускорению перехода к более высокому уровню. Отсутствие же обучения тормозит развитие. Обучение поэтому следует организовывать так, чтобы в связи с усвоением знаний о геометрических фигурах у детей развивалось и элементарное геометрическое мышление.

Ведущий способ деятельности при изучении геометрических фигур - моделирование. Моделирование как деятельность, изначально ориентированная на сенсомоторные функции психики, рассчитанная на максимальное использование и стимуляцию образного мышления, - наиболее эффективный способ обучения, психологически обусловленный, соответствующий физиологическим возможностям дошкольника. При этом основой для формирования геометрических представлений должна являться собственная моделирующая деятельность ребенка с адекватными (целесообразными) моделями изучаемых понятий и отношений. Эта позиция в полной мере отражает современный взгляд на необходимость построения учебного процесса на основе деятельностного личностно ориентированного подхода к организации обучения.

Особенно продуктивно для детей дошкольного возраста, соответственно, оптимально вещественное (конструирование) и графическое (рисунок, схема) моделирование. Чем младше дошкольник, тем доступнее вещественное моделирование, позволяющее строить наглядную, сенсорно воспринимаемую модель изучаемого понятия или отношения. Важно это с точки зрения, как психологических особенностей детей младшего возраста, так и процесса усвоения понятий.

Суть в том, что, изучая геометрические понятия, мы, с одной стороны, отвлекаемся от реальных объектов действительности: среди всех свойств рассматриваем только размер, форму и положение в пространстве, таким образом, постигая абстрактные модели реальных объектов. Но, с другой стороны, практически любое геометрическое понятие позволяет построить чувственно воспринимаемую модель, дает возможность перевести (воплотить) абстрактные геометрические идеи (понятия) в форму, воспринимаемую сенсорикой.

Дидактически действие моделирования как раз тот общий способ действия, который отражает специфику математического описания действительности. Если человек умеет построить какую-либо модель изучаемого понятия и описать ее на математическом языке, значит, он обладает тем, что мы называем математическим мышлением. Следовательно, моделирование способствует развитию математического мышления дошкольника.

 

3. Дидактические игры и упражнения для закрепления представлений о геометрических фигурах

 

В математическом развитии дошкольников широко используется важное средство обучения - игра. Однако эффективным оно становится в том случае, если применяется в нужном месте, в нужное время и в необходимых дозах.

Наиболее часто для закрепления представлений о геометрических фигурах используются дидактические игры и упражнения. Рассмотрим наиболее интересные из них.

Игры для младших дошкольников.

Игра Геометрическое лото. Для игры понадобятся карточки, на которых в ряд изображены геометрические фигуры (одноцветные контуры). На карточках - разный подбор фигур. На одной - круг, квадрат, треугольник; на другой - круг, квадрат, круг; на третьей - треугольник, треугольник, круг; на четвертой - квадрат, треугольник, круг и т. л. Кроме того, у каждого ребенка - набор геометрических фигур той же величины, что и контурные изображения на карточках (по две фигуры каждой формы разных цветов).

В начале занятия ребенок раскладывает все фигуры перед собой. Карточка лежит на столе перед ним. Воспитатель показывает фигуру, предлагает детям найти у себя такую же и разложить на карточках так, чтобы они совпали с нарисованными.

В зависимости от знаний и умений детей игру упрощают или усложняют (фигур может быть больше или меньше).

Игра Разложи в коробки. В этой игре используются коробки, на которых даны контурные изображения фигур, и различные по цвету и величине круги, квадраты, треугольники.

Задание детям - навести порядок, разложить все фигуры по коробкам. Дети - вначале рассматривают коробки и определяют, в какую из них что нужно положить. Затем они раскладывают фигуры по коробкам, соотнося их форму с контурным изображением.

В такой игре дети учатся группировать геометрические фигуры, абстрагируясь о