Аналитическая химия

Методическое пособие - Химия

Другие методички по предмету Химия

?ного коэффициента светопоглощения, метод градуировочного графика, метод стандартов (метод сравнения), метод добавок. В методе молярного коэффициента светопоглощения измеряют оптическую плотность D исследуемого р-ра и по известному значению молярного коэффициента светопоглощения ? рассчитывают концентрацию с поглощающего в-ва в растворе: с = D/(? І). В методе градуировочного графика готовят ряд стандартных растворов с известным значением концентрации с определяемого компонента и определяют их значение оптической плотности D.

По полученным данным строят градуировочный график - зависимость оптической плотности раствора от концентрации в-ва: D = f(с). В соответствии с законом Бухера-Ламберта-Бера график представляет собой прямую линию. Затем измеряют оптическую плотность D исследуемого раствора и по градуировочному графику определяют концентрацию определяемого соединения. Метод сравнения (стандартов) основан на сравнении оптической плотности стандартного и исследуемого растворов:

ст=?*І*сст и Dх= ?*І*сх,

 

откуда Dх/ Dст=?*І*сх/?*І*сст и сх=сст*Dх/Dст. В методе добавок сравниваются значения оптической плотности исследуемого раствора и того же раствора с добавлением (са) известного количества определяемого компонента. По результатам определений рассчитывают концентрацию в-ва в исследуемом растворе: Dх= ?*І*сх и Dх+а= ?*І*(сх+са), откуда Dх/Dх+а= ?*І*сх/?*І*(сх +са) и сх=са* Dх/Dх+а - Dх..

Атомно-абсорбционная спектроскопия основана на избирательном поглощении излучения атомами. Для переведения вещества в атомарное состояние раствор образца впрыскивают в пламя или подогревают в специальной кювете. В результате растворитель улетучивается или сгорает, а твердое в-во атомизируется. Большая часть атомов остается в невозбужденном состоянии, и лишь небольшая часть возбуждается с последующим испусканием излучения. Набор линий, соответствующий длинам волн поглощаемого излучения, т. е. спектр, является качественной характеристикой, а интенсивность этих линий - соответственно количественной характеристикой в-ва.

Атомно-эмиссионная спектроскопия основана на измерении интенсивности света, излучаемого возбужденными атомами. Источниками возбуждения могут быть пламя, искровый разряд, электрическая дуга и др. Для получения спектров испускания пробу в виде порошка или раствора вводят в источник возбуждения, где происходит переход в-ва в газообразное состояние или частичный распад его на атомы и простые (по составу) молекулы. Качественной характеристикой в-ва является его спектр (т. е. набор линий в спектре испускания), а количественной - интенсивность этих линий.

Люминесценция основана на испускании излучения возбужденными молекулами (атомами, ионами) при переходе их в основное состояние. Источниками возбуждения при этом могут быть ультрафиолетовое и видимое излучение, катодные лучи, энергия химической реакции и пр. Энергия излучения (люминесценции) всегда меньше поглощенной энергии, т. к. часть поглощенной энергии еще до начала испускания преобразуется в тепловую. Следовательно, люминесцентное испускание всегда имеет меньшую длину волны, чем длина волны поглощенного при возбуждении света. Люминесценция может использоваться как для обнаружения в-в (по длине волны), так и для их количественного определения (по интенсивности излучения). Электрохимические методы анализа основаны на взаимодействии в-ва с электрическим током. Протекающие при этом процессы локализованы либо на электродах, либо в приэлектродном пространстве. Большинство методов относятся к первому из этих типов. Потенциометрия. Электродным процессом называется гетерогенная реакция, при которой заряженная частица (ион, электрон) переносится через границу раздела фаз. В рез-те такого переноса на пов-ти электрода возникает разность потенциалов, обусловленная образованием двойного электрического слоя. Как всякий процесс, электродная реакция с течением времени приходит к равновесию, и на электроде устанавливается равновесный потенциал.

Измерение величин равновесных электродных потенциалов является задачей потенциометрического метода анализа. Измерения при этом проводят в электрохимической ячейке состоящей из 2-х полуэлементов. Одиг из них содержит индикаторный электрод (потенциал которого зависит от концентрации определяемых ионов в растворе в соответствии с уравнением Нернста), а другой - электрод сравнения (потенциал которого постоянен и не зависит от состава раствора). Метод может быть реализован в варианте прямой потенциометрии или в варианте потенциометрического титрования. В первом случае измеряют потенциал индикаторного электрода в анализируемом растворе относительно электрода сравнения и по уравнению Нернста рассчитывают концентрацию определяемого иона. В варианте потенциометрического титрования определяемый ион титруют подходящим реагентом, следя одновременно за изменением потенциала индикаторного электрода. По полученным данным строят кривую титрования (зависимость потенциала индикаторного электрода от объема прибавленного титранта). На кривой вблизи точки эквивалентности наблюдается резкое изменение значения потенциала (скачок потенциала) индикаторного электрода, что позволяет рассчитать содержание определяемого иона в растворе. Электродные процессы очень многообразны. В целом их можно классифицировать на 2-ве большие группы: процессы, происходящие с переносом электронов (т. е. собственно электрохимические процессы), и процессы, связанные с перено?/p>