Аналитическая химия
Методическое пособие - Химия
Другие методички по предмету Химия
случаях можно наз-ать электрохимической системой. Основные принципы потенциометрии
Как следует из названия метода - в нем измеряется потенциал. Для пояснения, что за потенциал и почему он возникает, рассмотрим систему состоящую из металлической пластины и находящегося с ней в контакте раствора, содержащего ионы того же металла (электролит) (рис. 1). Такая система называется электродом. Любая система стремится к такому состоянию, которое отвечает минимуму ее внутренней энергии. Поэтому в первый момент после погружения металла в раствор на границе раздела фаз начинают протекать процессы, ведущие к снижению внутренней энергии системы. Предположим, что ионизированное состояние атома металла энергетически более выгодно, чем нейтральное (возможен и обратный вариант). Тогда в первый момент времени атомы металла будут переходить из поверхностного слоя пластины в раствор, оставляя в ней свои валентные электроны. При этом поверхность пластины приобретает отрицательный заряд, причем этот заряд растет по мере увеличения количества атомов металла, перешедших в виде ионов в раствор. Электростатические силы притяжения разноименных зарядов (отрицательнозаряженные электроны в пластине и положительные ионы металла в растворе) не позволяют удалиться этим зарядам от границы раздела фаз, а также вызывают обратный процесс перехода ионов металла из раствора в металлическую фазу и восстановления их там. Когда скорости прямого и обратного процессов становятся одинаковыми, наступает равновесие. Состояние равновесия системы характеризуется разделением зарядов на границе раздела фаз, т. е. появляется скачок потенциала. Следует отметить, что описанный механизм возникновения электродного потенциала является не единственным, в реальных системах протекает также множество других процессов, приводящих к образованию скачка потенциалов на межфазовой границе. Кроме того, скачок потенциала может возникать на границе раздела фаз не только при контакте электролита с металлом, но и при контакте электролита с другими материалами, например, полупроводниками, ионообменными смолами, стеклами и т. д.
При этом ионы, концентрация которых влияет на потенциал электрода называются потенциалопределяющими. Потенциал электрода зависит от природы материала, контактирующего с электролитом, концентрации потенциалопределяющих ионов в растворе и температуры. Этот потенциал измеряется относительно другого электрода, потенциал которого постоянен. Т. о., установив эту связь, возможно использовать ее в аналитической практике для определения концентрации ионов в растворе. При этом электрод, потенциал которого измеряется, носит название измерительный, а электрод, относительно которого производятся измерения - вспомогательный или электрод сравнения. Постоянство потенциала электродов сравнения достигается постоянством концентрации потенциалопределяющих ионов в его электролите (электролит №1). Состав электролита №2 может меняться. Для предотвращения смешивания двух разных электролитов они разделяются мембраной, проницаемой для ионов. Потенциал измерительного электрода принимается равным измеренной э.д.с., приведенной электрохимической системы. Применяя в качестве электролита №2, растворы известного состава можно установить зависимость потенциала измерительного электрода от концентрации потенциалоопределяющих ионов. Эта зависимость в дальнейшем может быть использована при анализе раствора неизвестной концентрации.
Для стандартизации шкалы потенциалов в качестве электрода сравнения принят стандартный водородный электрод, потенциал которого принят равным нулю при любой температуре. Однако при обычных измерениях водородный электрод применяется редко из-за своей громоздскости. В повседневной практике применяют другие более простые электроды сравнения, потенциал которых относительно водородного электрода определен. Поэтому, при необходимости, результат измерения потенциала, проведенного относительно таких электродов, может быть пересчитан относительно водородного электрода. Наиболее широко распространенными являются хлорсеребряный и каломельный электроды сравнения. Разность потенциалов измерительного электрода и электрода сравнения является мерой концентрации определяемых ионов.
Электродную функцию можно описать с помощью линейного уравнения Нернста:
Е = Е0 + 2,3 RT/nF *lg а,
где Е - разность потенциалов между измерительным электродом и электродом сравнения, мВ; Е0 - константа, зависящая в основном от свойств электрода сравнения (стандартный потенциал электрода), мВ; R - газовая постоянная, Дж*моль-1* К-1.; n - заряд иона с учетом его знака; F - число Фарадея, Кл/моль; Т - абсолютная температура, 0 К; член 2,3 RT/nF, входящий в уравнение Нернста при 250 С равен 59,16 мВ для однозарядных ионов. Метод без наложения внешнего (постороннего) потенциала классифицируется как метод, основанный на учете природы источника электрической энергии в системе. В этом методе источником эл.эн. служит сама элек-хим-ая система, представляющая собой гальванический элемент (гальваническую цепь) - потенциометрические методы. ЭДС и электродные потенциалы в такой системе зависят от сод-ия определяемого в-ва в р-ре. Электрохимическая ячейка включает 2-ва электрода - индикаторный и электрод сравнения. Величина ЭДС, генерируемой в ячейке, равна разности потенциалов этих 2-х электродов.
Потенциал электрода сравнения в условиях проведения потенциометрическ