Анализ погрешностей волоконно-оптического гироскопа
Дипломная работа - Радиоэлектроника
Другие дипломы по предмету Радиоэлектроника
?их методов. Это дает возможность наиболее просто анализировать особенности технологии изготовления различных волоконных световодов и принимать решения по улучшению их качественных характеристик при использовании в волоконной гироскопии.
Оценим потери мощности и уширение импульсного сигнала в одномодовом ступенчатом оптическом волокне dс = (50.01) мкм со случайными колебаниями радиуса сердцевины (радиус корреляции примем типичным для современных волокон изготавливаемых зарубежом l0 = 0.01 мкм ). Показатель преломления сердцевины n1= 1.5; показатель преломления оболочки - n2 = 1.495 мкм.
Величину коэффициента затухания мощности определим по выражению (2.52) . Радиус светового пятна r0 находим по формуле (2.21), принимая V=2.4. Дисперсию функции колебания радиуса D определим из условия нормального закона распределения (z):D = (0.005/3)2 = 2.78 10-6 мкм2 . Соответственно DS находим по (2.59) . Угол, под которым происходит излучение, принимаем равным нулю, вследствие чего функция Бесселя равна 1 , а потери мощности по (2.52) будут равны 0.6 дБ/км.
Уширение импульса вследствие волноводной дисперсии находим по (2.63) . Подстановка численных значений даёт
D(l) = 3.02 10-8 x l пс2 , а максимальное уширение импульса на длине l ( l в км ) будет равно max = 5.2 10-4 пс.
Полученные значения позволяют оценить невзаимность условий распространения волн бегущих во встречных направлениях и сделать вывод о необходимости точного соблюдения технологии изготовления волокон и обеспечения требуемых технологических параметров при сборке волоконного контура и его дальнейшей эксплуатации.
Как уже отмечалось, в круглом одномодовом световоде основная мода может существовать в двух ортогональных поляризациях и . В идеальном аксиально-симметричном и свободном от механических напряжений волоконном световоде эти моды вырождены. В реальных световодах наблюдается различие в постоянных распространения указанных мод, вызванное отклонением геометрии от идеальной и различием в значениях остаточных напряжениях в направлениях x и y. Остаточные напряжения являются результатом процесса вытяжки световода. Наличие связи между двумя ортогонально поляризованными модами приводит к вращению плоскости поляризации вдоль оси световода. Определенное состояние поляризации может сохраняться в круглом волоконном световоде на длине не более чем несколько метров.
В волоконно-оптических гироскопах для решения этой проблемы на входе и выходе волоконного контура помещают специальное устройство - поляризатор, позволяющее отфильтровать моды с нежелательной поляризацией. Параметры этого устройства не идеальны, к тому же при распространении энергии по волокну происходит взаимодействие мод с различными поляризациями что приводит к изменению уровней сигналов а следовательно и фазовых задержек. Необходимо обеспечить распространение по волокну сигнала только с одной поляризацией и тем самым снизить требования к поляризатору и устранить взаимное влияние мод друг на друга .
Разработаны однополяризационные световоды с линейной и круглой поляризациями. Световоды с линейной поляризацией представляют собой аксиально-несимметричные структуры, в которых может распространяться или мода только одной поляризации, или две моды различной поляризации, но с большой разностью между значениями постоянных распространения этих мод. Первые являются абсолютно поляризационными световодами, вторые - световодами с линейным двулучепреломлением.
Устойчивость поляризации в световоде можно реализовать, если использовать двухслойные прямоугольные эллиптические световоды или круглые световоды с осесимметричным распределением показателя преломления. В этих световодах снимается вырождение ортогонально поляризованных мод, и две ортогональные компоненты фундаментальной моды будут иметь разные фазовые постоянные распространения. Это уменьшит связь по мощности между двумя поляризациями и, следовательно, уменьшит преобразование мод на нерегулярностях.
Вырождение можно снять комбинацией геометрической анизотропии и (или) анизотропии силовых напряжений в поперечной xy-плоскости световода. Можно вводить либо геометрическую эллиптичность сердечника волокна, либо индуцированное двулучепреломление материала световода.
В последнем случае для изготовления световода можно использовать разнородные материалы с различными температурными коэффициентами расширения. Это позволит вводить анизотропию напряжений в волокно посредством эффекта фотоупругости, что приводит к соответствующему двулучепреломлению. При изготовлении такого волокна оболочка (SiO2) легируется В2O3 , можно использовать также GeO2 . P2O5 . Сердечник изготавливается из безпримесного кремния. Вследствие разных коэффициентов термического расширения и поверхностных натяжений получаемое волокно имеет цилиндрический сердечник, эллиптическую внутреннюю оболочку и круговое внешнее покрытие. При такой структуре наблюдается сильная анизотропия напряжений. Мерой этой анизотропии является так называемое модальное двулучепреломление:
(2.64)
Чем больше модальное двулучепреломление В, тем меньше связь между поляризационными модами.
Для количественного измерения В часто вводят новое понятие - так называемую длину биений Lб, связанную с модальным двулучепреломлением соотношением:
(2.65)
или
Длину биений Lб можно непосредственно измерить несколькими способами (например, модуляционным способом). Требуемое ?/p>