Информация по предмету Биология

  • 1061. Основные проблемы генетики и механизм воспроизводства жизни
    Другое Биология

    Эффекты генных мутаций чрезвычайно разнообразны. Большая часть мелких генных мутаций фенотипически не проявляется, поскольку они рецессивны, однако известен ряд случаев, когда изменение всего лишь одного основания в определенном гене оказывает глубокое влияние на фенотип. Одним из примеров служит серповидноклеточная анемия заболевание, вызываемое у человека заменой основания в одном из генов, ответственных за синтез гемоглобина. Молекула дыхательного пигмента гемоглобина у взрослого человека состоит из четырех полипептидных цепей (двух - и двух цепей), к которым присоединены четыре простетические группы гема. От структуры полипептидных цепей зависит способность молекулы гемоглобина переносить кислород. Изменение последовательности оснований в триплете, кодирующем одну определенную аминокислоту из 146, входящих в состав - цепей, приводит к синтезу аномального гемоглобина серповидных клеток (HbS). Последовательности аминокислот в нормальных и аномальных -цепях различаются тем, что в одной точке аномальных цепей гемоглобина S глутамидовая кислота замещена валином.В результате такого, казалось бы, незначительного изменения гемоглобин S кристаллизуется при низких концентрациях кислорода, а это в свою очередь приводит к тому, что в венозной крови эритроциты с таким гемоглобином деформируются (из округлых становятся серповидными) и быстро разрушаются. Физиологический эффект мутации состоит в развитии острой анемии и снижении количества кислорода, переносимого кровью. Анемия не только вызывает физическую слабость, но и может привести к нарушениям деятельности сердца и почек и к ранней смерти людей, гомозиготных по мутантному аллелю. В гетерозиготном состоянии этот аллель вызывает значительно меньший эффект: эритроциты выглядят нормальными, а аномальный гемоглобин составляет только около 40 %. У гетерозигот развивается анемия лишь в слабой форме, а зато в тех областях, где широко распространена малярия, особенно в Африке и Азии, носители аллеля серповидноклеточности невосприимчивы к этой болезни. Это объясняется тем, что ее возбудитель - малярийный плазмодий - не может жить в эритроцитах, содержащих аномальный гемоглобин. 2.15. Летальные мутацииИзвестны случаи, когда один ген может оказывать влияние на несколько признаков, в том числе и на жизнеспособность. Летальные мутации вызывают такие изменения в развитии, которые несовместимы с жизнедеятельностью. Доминантные летальные гены трудны для изучения, и сведения о них ограничены. Напротив, гены с рецессивным летальным действием изучены гораздо лучше. Известно множество рецессивных мутаций у различных организмов, которые никак себя не проявляют фенотипически. Существует также очень много доминантных мутаций, имеющих в гетерозиготном состоянии четко отличающийся фенотип, которые в гомозиготном состоянии вызывают летальный эффект. Фаза летального действия, т.е. время, когда мутантный ген реализуется, существенно варьирует: от самых первых этапов эмбрионального развития до периода полового созревания. В некоторых случаях летальные гены могут иметь более одной фазы летального действия. Это означает, что ген или его продукты могут иметь несколько раз активно работать и использоваться в ходе онтогенеза. Летальный эффект одних мутантных генов проявляется всегда, другие показывают существенную зависимость от условий среды. У человека и у других млекопитающих определенный рецессивный ген вызывает образование внутренних спаек легких, что приводит к смерти при рождении. Другим примером служит ген, который влияет на формирование хряща и вызывает врожденные уродства, ведущие к смерти новорожденного.

  • 1062. Основные проявления фундаментальных взаимодействий в макромире
    Другое Биология

    Но не все материальные частицы являются носителями электрического заряда. Электрически нейтральны, например, фотон и нейтрино. В этом электричество и отличается от гравитации. Все материальные частицы создают гравитационное поле, тогда как с электромагнитным полем связаны только заряженные частицы. Долгое время загадкой была и природа магнетизма. Как и электрические заряды, одноименные магнитные полюсы отталкиваются, а разноименные - притягиваются. В отличие от электрических зарядов магнитные полюсы встречаются не по отдельности, а только парами - северный полюс и южный. Хорошо известно, что в обычном магнитном стержне один конец действует как северный полюс, а другой - как южный. Еще с древнейших времен известны попытки получить посредством разделения магнита лишь один изолированный магнитный полюс - монополь. Но все они заканчивались неудачей: на месте разреза возникали два новых магнита, каждый из которых имел и северный, и южный полюсы. Может быть, существование изолированных магнитных полюсов в природе исключено? Определенного ответа на этот вопрос пока не существует.

  • 1063. Основные теории происхождения человека
    Другое Биология

     

    1. Широкая генетическая изменчивость и вариабельность антропогенеза. Каждая из стадий эволюции человека включает большое число вариаций как в пространстве, так и во времени, т.е. новые группы формируются не сразу, а в недрах многочисленных схожих форм. Отдельные формы представляют собой комбинации прогрессивных и архаических особенностей. Это возможно пи широкой генетической изменчивости, которая должна значительно превышать известную современной генетике изменчивость. Но откуда взялись мутации? В настоящее время это доподлинно не известно, но есть гипотезы. Одна из них принадлежит Беляеву. Основным источником «дополнительной» изменчивости является высокий уровень стрессовых реакций стресс от общения с себеподобными. Доказывается это предположение на опыте одомашнивания норок, при котором резко повышается изменчивость. Стрессовые реакции влияют на нейрогуморальную систему и усиливают нестабильность ДНК. В результате антропогенеза усиливается дифференциация на отдельные филогенетические линии с высоким уровнем изоляции на ранних этапах. А на последних этапах эволюции человека усиливается устойчивость морфологий, изменчивость проявляет себя при возникновении различных рас.
    2. Индивидуальный отбор сменяется биосоциогенезом.
    3. Темп антропогенеза ускоряется. Эволюция австралопитеков продолжалась в течение 7 млн лет, человека прямоходящего 1-1,3 млн лет, неандертальца 0,5 млн лет, современного человека 100-40 тыс. лет.
    4. Осуществляется неравномерное развитие различных систем и органов мозаичная эволюция. При значительном усовершенствовании головного мозга, ряд систем эволюционировал медленно и многие системы оказывались несовременными, что было энергетически невыгодно, не позволяло достигать высоких скоростей и привело к морфологическим противоречиям: роды крайне затруднены, расширенные ножные вены, грыжи, аппендицит, т.е. человек не успел приспособиться к прямохождению.
    5. Полиморфность вида чрезвычайно высока и характеризуется образованием различных рас, которые различаются морфологически и физиологически. Генотипические различия невелики, благодаря чему возможно жизнеспособное потомство смешанных браков.
    6. Большое значение играет дрейф генов, который обеспечивается не только природными изоляциями, но и природными барьерами, особенно на последних этапах.
    7. В последние время с уменьшением роли естественного отбора начинает увеличиваться доля генетического груза, проявляющегося во врожденных аномалиях. В настоящее время считается, что запас комбинативной изменчивости еще достаточно высок, но развитие медицины может резко ускорить увеличение генетического груза.
  • 1064. Основные теории процесса эволюции человека
    Другое Биология

    В своё время СМИ неоднократно сообщали об удивительном методе клонирования. Каждая клетка содержит достаточный объём генетической информации для того, чтобы воспроизвести данного человека целиком. Из одной клетки, например, пальца или уха вырастает весь организм! Сам термин "клонирование" происходит от греческого "klon"-"ветвь" В 1980году с помощью генной инженерии мышам смогли привить элементы бактерий, что сделало их устойчивыми к вызываемым этими бактериям болезням. В 1982г. с помощью комбинирования генных структур мыши и крысы учёным удалось сконструировать крысо-мышь, которая была в 2раза крупнее своих мышей- сородичей. В 1985г. успешно внедрили человеческие гены роста в организм свиней, овец и кроликов, а в 1987 шведским специалистам удалось создать суперсёмгу. Начало 1997г. ознаменовалось успехами учёных в области клонирования. Стало известно об успешном появлении на свет овцы Долли,"сконструированной" из генетического материала двух овец и рожденной третьей овцой. Следом появились сообщения о клонировании кожного покрова и даже отдельных органов для трансплантации. Современная наука применила клонирование! А почему внеземная цивилизация не могла применить тоже самое для создания человека и его воспроизводства, учитывая, как следует из шумерских священных текстов, их технологии обогнали даже современные, на сотни лет? Этот вопрос, наверное, останется без ответа ещё долгое время. Итак, шумеры утверждали, что род людской возник от не которых "богов" прибывших когда-то на Землю с 12-ой планеты- Нибиру и основавших первые поселения в р-оне Персидского залива. Это место ещё называют "колыбелью цивилизации". Здесь можно и вполне логично предположить, что и после падения шумерской цивилизации "боги" не покинули Земли, а наоборот принялись "работать" с другими цивилизациями, что послужит более глубокому осмыслению темы создания человека внеземной цивилизацией.

  • 1065. Основные факторы и движущие силы биологической эволюции
    Другое Биология

    На уровне популяции наблюдаются элементарные эволюционные явления, которые приводят к генетическим изменениям популяции. Эти изменения основаны на элементарном эволюционном материале - мутациях, получающихся в результате постоянно идущего в природе мутационного процесса и комбинативной изменчивости, возникающей в результате комбинации хромосом при гибридизации. Помимо мутационного процесса и рекомбиногенеза к факторам эволюции относятся популяционные волны (численность популяций), поток генов и дрейф генов (случайные колебания частот генов в малых популяциях), изоляция и естественный отбор. Мутационный процесс - источник наследственных изменений - мутаций. Рекомбиногенез приводит к возникновению другого типа наследственных изменений - комбинативной изменчивости, которая ведёт к появлению бесконечно большого разнообразия генотипов и фенотипов, т. е. служит источником наследственного разнообразия и основой для естественного отбора. Рекомбинации генетического материала связаны с перераспределением генов родителей у потомков, обусловленным кроссинговером, случайным расхождением хромосом и хроматид в мейозе и случайным сочетанием гамет при оплодотворении.

  • 1066. Основные факторы эволюции по Дарвину
    Другое Биология

    Каким же образом осуществляется естественный отбор? Одним из главнейших его условий в естественной среде Дарвин считает перенаселение видов, возникающее как следствие геометрической прогрессии размножения. Дарвин обратил внимание на то, что особи видов, дающих даже относительно небольшое реальное потомство, в конечном итоге размножаются довольно интенсивно. Например, аскарида продуцирует в сутки до 200 тыс. яиц, самка окуня выметывает 200ЗООтыс, а трески до 10 млн. икринок. То же можно наблюдать у растений: одно растение осота дает до 19 тыс. семян, пастушьей сумки более 70 тыс., заразихи 143 тыс., белены более 400 тыс. и т. д. Даже слон, принося за свою жизнь не более шести детенышей, может дать начало поколению, которое за 750 лет выразится числом в 19 млн. особей. Таким образом, плодовитость организмов в целом очень велика, но фактически в природе никогда не наблюдается того количества особей любого вида животных и растений, которые можно было бы ожидать. Значительная часть потомства гибнет по различным причинам. Дарвин делает заключение, что перенаселение является основной (хотя и не единственной) причиной возникновения между организмами борьбы за существование. В понятие «борьба за существование» он вкладывает широкий и метафорический смысл. В «Происхождении видов» Дарвин пишет: «Я должен предупредить, что применяю этот термин в широком и метафорическом смысле, включая сюда зависимость одного существа от другого, а также включая (что еще важнее) не только жизнь одной особи, но и успех ее в оставлении после себя потомства».

  • 1067. Основы биотехнологии и ее научно-производственная база
    Другое Биология

    ДатаСобытие1917Карл Эреки ввел термин «биотехнология»1943Произведен пенициллин в промышленном масштабе1944Эвери, Мак Леод и Мак Карти показали, что генетический материал представляет собой ДНК1953Уотсон и Крик определили структуру молекулы ДНК1961Учрежден журнал «Biotechnology and Bioengineering»1961-1966Расшифрован генетический код1970Выделена первая рестрицирующая эндонуклеаза1972Коран и др. синтезировали полноразмерный ген тРНК1973Бойер и Коэн положили начало технологии рекомбинантных ДНК1975Колер и Мильштейн описали получение моноклональных антител1976Изданы первые руководства, регламентирующие работы с рекомбинантными ДНК1976Разработаны методы определения нуклеотидной последовательности ДНК1978Фирма «Genetech» выпустила человеческий инсулин, полученный с помощью Е.coli1980Верховный суд США, слушая дело Даймонд против Чакрабарти, вынес вердикт, что микроорганизмы, полученные генно-инженерными методами, могут быть запатентованы1981Поступили в продажу первые автоматические синтезаторы ДНК1981Разрешен к применению в США первый диагностический набор моноклональных антител1982Разрешена к применению в Европе первая вакцина для животных, полученная по технологии рекомбинантных ДНК1983Для трансформации растений применены гибридные Ti плазмиды1988Выдан патент США на линию мышей с повышенной частотой возникновения опухолей, полученную генно инженерными методами1988Создан метод полимеразной цепной реакции (ПЦР)1990В США утвержден план испытаний генной терапии с использованием соматических клеток человека 1990Официально начаты работы над проектом «Геном человека»1994-1995Опубликованы подробные генетические и физические карты хромосом человека1996Ежегодный объем продаж первого рекомбинантного белка (эритропоэтина) превысил 1 млрд. долларов1996Определена нуклеотидная последовательность всех хромосом эукариотического микроорганизма1997Клонировано млекопитающее из дифференцированной соматической клетки

  • 1068. Основы гистологии и эмбриологии
    Другое Биология

    Различают несколько типов яйцеклеток. Тип яйцеклетки зависит от длительности эмбрионального развития организма, от сложности его строения, от условий развития и от того, есть или нет личиночная стадия. Сначала появились первично изолеиитальные яйцеклетки. Они содержат мало желтка, и он равномерно распределен по всему объему клетки, диаметром около 100 мкм. Развитие животных с таким типом яйцеклетки идет в водной среде. Затем появляются телолецитальные яйцеклетки. У них возрастает содержание желтка, и он преимущественно локализуется на вегетативном полюсе. Также увеличивается размер яйцеклеток. Среди них выделяют умеренно телолецитальные (амфибии, рептилии) и резко телолецитальные (птицы) с очень высоким содержанием желтка. который полностью сосредоточен на вегетативном полюсе. Затем появляется вторично изолецитальная яйцеклетка (у высших млекопитающих и человека). Ее размер около 100 мкм. Содержит малое количество желтка, который равномерно распределен по всей цитоплазме. Вокруг клетки располагается блестящая оболочка, которая снаружи окружена эпителиальными клетками - "лучистый венец". Развитие таких организмов идет внутриутробно в материнском организме.

  • 1069. Основы естествознания
    Другое Биология

    Жизнедеятельность клетки как единицы биологической активности обеспечивается совокупностью взаимосвязанных, приуроченных к определенным внутриклеточным структурам, упорядоченных во времени и пространстве обменных (метаболических) процессов. Эти процессы образуют три потока: информации, энергии и веществ. Благодаря наличию потока информации клетка на основе многовекового эволюционного опыта предков приобретает структуру, отвечающую критериям живого, поддерживает ее во времени, а также передает в ряду поколений. В потоке информации участвуют ядро (конкретно ДНК хромосом), макромолекулы, переносящие информацию в цитоплазму (мРНК), цитоплазматический аппарат трансляции (рибосомы и полисомы, тРНК, ферменты активации аминокислот). На завершающем этапе этого потока полипептиды, синтезированные на полисомах, приобретают третичную и четвертичную структуры и используются в качестве катализаторов или структурных белков. Кроме основного по объему заключенной информации ядерного генома в эукариотических клетках функционируют также геномы митохондрий, а в зеленых растениях - и хлоропластов.

  • 1070. Основы естествознания
    Другое Биология

    Одним из результатов внедрения принципа универсального эволюционизма было возникновение синергетики. В классической науке господствовало убеждение, что материи свойственна тенденции к понижению степени ее упорядоченности, стремление к равновесию, что в энергетическом смысле означает хаотичность. Когда принцип эволюционизма, был распространен на другие уровни организации материи, противоречие стало еще заметнее. Стало очевидно, что для сохранения целостной не противоречивой картины мира нужно признать, что в природе действует не только разрушительный, но и созидательный принцип. Что материя способна самоорганизовываться и самоусложняться. На волне этих проблем возникла синергетика теория самоорганизации. В настоящее время она развивается по нескольким направлениям: синергетика (Г. Хакен), неравновесная термодинамика (И. Пригожин) и др. Общими положениями для всех для них являются следующие: процессы разрушения и созидания во Вселенной по меньшей мере равноправны. процессы созидания нарастания сложности и упорядоченности) имеют единый алгоритм независимо от природы систем в которых они осуществляются. Таким образом, синергетика ставит перед собой задачу выявление некого универсального механизма, с помощью которого осуществляется самоорганизация как в живой, так в неживой природе. Под самоорганизацией в данном случае понимается спонтанный переход открытой неравновесной системы от менее сложного к более сложным и упорядоченным формам организации. Объектами синергетики являются системы, которые 1. открытые, то есть, способны обмениваться веществом с окружающей внешней средой; 2. неравновесные, то есть находящиеся в состоянии далеком от термодинамического равновесия. Развитие таких систем, приводящее к постепенному нарастанию сложности, протекает следующим образом первая фаза период плавного эволюционного развития с хорошо предсказуемыми линейными изменениями, приводящими в итоге к некому неустойчивому критическому состоянию. Вторая фаза выход из критического состояния одномоментно скачком и переход в новое устойчивое состояние с большей степенью сложности и упорядоченности. Особенно важно учесть, что переход в новое устойчивое состояние не является однозначным. Система достигшая, критического состояния находится как бы на развилке, оба варианта в момент выбора являются одинаково возможными. Но как только выбор сделан, и система достигла нового состояния равновесия, обратного пути нет, развитие систем такого рода всегда необратимо и непредсказуемо, точнее любые прогнозы ее развития могут носить лишь вероятностный характер. Синергетическая интерпретация явлений открывает новые возможности их изучения.

  • 1071. Основы здорового образа жизни студента
    Другое Биология

    Бережное отношение к здоровью необходимо активно воспитывать именно в студенческие годы, когда устанавливаются основные привычки и организация трудовой деятельности в течение дня. Однако нередко молодые люди нарушают элементарные правила гигиены быта, питания и др. Так, согласно исследованиям до 27% студентов, проживающих в общежитиях, уходят на занятия не позавтракав. В этом случае учебные занятия проходят при снижении работоспособности на 9-21%. До 38% студентов принимают горячую пищу 2 раза в день, в то время как институт питания рекомендует студентам 4-разовое питание в день, имея ввиду организацию второго завтрака после 11 часов. Отход ко сну у 87% студентов, проживающих в общежитиях, затягивается до 1-2 часов ночи, вследствие чего они не высыпаются, что сказывается на снижении умственной работоспособности в течение учебного дня на 7-18% по сравнению с тем, когда сон организован нормально. Кроме того, часть студентов (34%) из-за хронического недосыпания прибегают к дневному сну по 1-3 часа.

  • 1072. Основы молекулярной биологии клетки
    Другое Биология
  • 1073. Основы процесса клонирования
    Другое Биология

    Начало истории уместно датировать 1839 годом, когда Теодор Шванн доказал свою клеточную теорию, закрепленную в учебниках биологии следующим лозунгом: клетка происходит от клетки. Клеточная теория таила в себе два начала: наследственность и дифференциацию. Образуются ли в результате клеточного деления две идентичных дочерних клетки, или производные разные? Когда через некоторое время носителем наследственности определили несущее хромосомы ядро, внимание ученых переключилось с клеточного на ядерный потенциал. Одним из видных учёных, занимавшийся этой проблемой, был Ганс Спиман. Его исследования были прерваны войной. После Второй мировой войны, советский эмбриолог Георгий Викторович Лопашов разработал метод пересадки (трансплантации) ядер в яйцеклетку лягушки. Однако ученому не повезло. В августе 1948 года состоялась печально известная сессия ВАСХНИЛ, где окончательно утвердилось непререкаемое лидерство в биологии известного борца с генетикой Т.Д. Лысенко. Как это часто случалось в истории нашей науки, приоритет достался американским эмбриологам Роберту Бригсу и Томасу Кингу, когда в 1952 году они потрясли ученый мир сообщением об удачной пересадке ядра лягушки Rana pipiens. Но к 1960 году Бригс и Кинг пришли к неутешительному выводу, что дифференциация сопровождается прогрессирующим сужением возможности ядер стимулировать нормальное развитие организма. В то же самое время в Англии шведский эмбриолог Майкл Фишберг совместно с коллегами Томасом Элсдейлом и Джоном Гердоном работал над видом лягушки Xenopus laevis, более перспективным для исследований, чем Rana, поскольку там легче решались вопросы трансплантации. На примере Xenopus удалось вырастить головастиков из ядер половозрелых особей. Это был настоящий прорыв. На примере Xenopus Гердон с коллегами, в конце концов, научились создавать плодовитых взрослых лягушек, используя ядра отдельных эпителиальных клеток пищеварительного тракта головастиков. Это означало, что используемый для пересадки генетический материал все еще содержал необходимую информацию для всего организма. Вокруг исследований Гердона поднялся большой шум. Тогда впервые заговорили и о клонировании человека. Наряду с амфибиями проводились и опыты на млекопитающих. Еще в 1942 году были получены живые особи крыс из изолированных на этапе двухклеточного деления бластомеров, а в 1968 году кролики из бластомеров, поделившихся на 8 клеток. Успешные опыты с амфибиями заставили ученых задуматься о клонировании эмбрионов млекопитающих, в частности мышей. Первое клонирование мыши и клонирование первого млекопитающего было осуществлено в СССР в 1987 г. в лаборатории Чайлахяна Л.М, Вепренцева Б.Н., Свиридовой Т.А., Никитина В.А. Авторы отправили свою статью в журнал «Nature», но работа не была опубликована. Первенство в клонировании первого млекопитающего за советскими учеными не признано до сих пор. В 1979 году Стин Вилландсен вырастил отдельные взрослые клетки из восьмиклеточных эмбрионов овцы и крупного рогатого скота. Эксперименты по пересадке ядер для крупного рогатого скота оказались более эффективными, нежели для мышей. В 1991 году Вилландсен сообщил об эксперименте по переносу 100 ядер телят, источником которых была морула. Результатом следующих экспериментов явились клоны восьми телят, полученных из эмбриона одного донора. К сожалению, все телята развивались с отклонениями и имели явные признаки патологии. В феврале 1997 года появилось сообщение о том, что в лаборатории Яна Вильмута в шотландском городе Эдинбурге в Рослинском университете сумели клонировать овцу. В результате таких манипуляций из 244 образцов 34 развились до стадии, когда их можно было имплантировать в матку суррогатной матери. Летом 1995 года родились 5 ягнят, из которых двое Меган и Мораг, первые клонированные млекопитающие дожили до половозрелого возраста, но вскоре погибли. Так стали появляться на свет клонированные овцы. Долли оказалась единственной выжившей из 277. Эксперимент проходил следующим образом. На первом этапе из вымени овцы была взята клетка молочной железы, причем активность ее генов была временно погашена. После этого клетка была помещена в ооцит - эмбриональное окружение, для того чтобы генетическая ее программа перестроилась на развитие эмбриона. Одновременно с этим из готовой к оплодотворению клетки другой овцы было удалено ядро, после чего клетка несколько часов охлаждалась до температуры 5-10 градусов. На следующем этапе яйцеклетка, точнее оставшаяся от нее цитоплазма, была внесена в электрическое поле, где под действием электрического тока разрушились клеточные мембраны, и цитоплазма яйцеклетки слилась с ядром, выделенным из клетки молочной железы.

  • 1074. Основы учения о биосфере
    Другое Биология

    Частички гумуса строятся из фрагментов органических молекул (белков, углеводов) при активном участии микроорганизмов почвы. Сначала почвенные животные (черви, насекомые) размельчают остатки растений. Затем грибы и микроорганизмы расщепляют сложные органические молекулы (целлюлозу, белки и пр.) на простые фрагменты. Другие микроорганизмы с помощью ферментов соединяют эти фрагменты в органические молекулы гумуса (в основном, гуминовые кислоты) длинными цепями обвивающие частички глины в несколько слоев. Получаются устойчивые к действию химических соединений и микроорганизмов гранулы, способные сохранять запас плодородия длительное время. При недостатке питательных веществ особые микроорганизмы "распечатывают" эти гранулы и пускают их плодородную силу в дело. Частички гумуса придают почве водо- и воздухопроницаемость. Гумус участвует в разрушении минералов почвенной подложки, вовлекает их в биологический круговорот. Микроорганизмы-гумусообразователи теплолюбивы, поэтому в южных широтах почвы особенно богаты гумусом. Когда почву распахивают и оставляют под паром на год-два, то в прогретой вспаханной земле микроорганизмы синтезируют гумус из отмершей при вспахивании растительности и запасов растительных остатков. Почва, обогащенная гумусом, становится более плодородной. В этом секрет "черного пара".

  • 1075. Основы цитологии
    Другое Биология

    Развитие цитологии в 1-и половине 20 в. В первые десятилетия 20 в. стали применять темнопольный конденсор, с помощью к-рого объекты под микроскопом исследовались при боковом освещении. Темнопольиый микроскоп позволил изучать степень дисперсности и гидратации клеточных структур и обнаруживать нек-рые структуры субмикроскопич. размеров. Поляризационный микроскоп дал возможность определять ориентацию частиц в клеточных структурах. С 1903 развивается микроскопирование в ультрафиолетовых лучах, ставшее в дальнейшем важным методом исследования цитохимии клетки, в частности нуклеиновых кислот. Начинает применяться флюорсецентная микроскопия. В 1941 появляется фазово-контрастный микроскоп, позволяющий различать бесцветные структуры, отличающиеся лишь оптич. плотностью или толщиной. Последние два метода оказались особенно ценными при изучении живых клеток. Разрабатываются новые методы цитохимич. анализа, среди них метод выявления дезоксирибо-нуклепноаой к-ты (нем. учёные Р. Фёль-ген и Г. Розенбек. 1924). Создаются микроманипуляторы, с помощью к-рых можно производить над клетками разнообразные операции (инъекции в клетку веществ, извлечение и пересадку ядер, локальное повреждение клеточных структур и т. д.). Большое значение приобрела разработка метода культуры тканей вне организма, начало к-рому было положено в 1907 амер. учёным Р. Гаррисоном. Интересные результаты были получены при сочетании этого метода с замедленной микрокчносъёмкой, что дало возможность видеть на экране медленные изменения в клетках, протекающие незаметно для глаза, ускоренными в десятки и сотни раз. В первые три десятилетия 20 в. усилия учёных направлены были на выяснение функциональной роли клеточных структур, открытых в последней четверти 19 в., в частности было установлено участие комплекса Гольджи в выработке секретов и др. веществ в гранулярной форме (сов. учёный Д. Н. Насонов, 1923). Описаны частные органоиды специализированных клеток, опорные элементы в ряде клеток (Н. К. Кольцов, 1903 1911), исследованы структурные изменения при различной клеточной деятельности (секреция, сократит, функция, деление клеток, морфогенез структур и т. д.), В растит, клетках прослежено развитие вакуолярной системы, образование крахмала в пластидах (франц. учёный А. Гийермон, 1911). Установлена видовая специфичность числа и формы хромосом, что в дальнейшем было использовано для систематики растений и животных, а также для выяснения филогенетич. родства в пределах более низких таксономич. единиц (кариосистематики). Обнаружено, что в тканях имеются разные классы клеток, отличающихся кратным отношением размеров ядер (нем. учёный В. Якоби, 1925). Кратное увеличение размера ядер сопровождается соответствующим увеличением (путём эндомитоза) числа хромосом (австр. учёный Л. Гейтлер, 1941). Исследования действия агентов, нарушающих механизм деления и хромосомный аппарат клеток (проникающее излучение, колхицин, ацетонафтен, трипофлавин и др.), привели к разработке методов искусств. получения полиплоидных форм (см. Полиплоидия), что дало возможность вывести ряд ценных сортов культурных растений. С помощью реакции Фельгена положительно решился спорный вопрос о наличии гомолога ядра, содержащего дезоксирибонуклеиновую к-ту у бактерии (сов. учёный М. А. Пешков, 1939 1943, франц. учёный В. Делапорт, 1939, англ. учёный С. Робиноу, 1942) и сине-зелёных водорослей (сов. учёные Ю. И. Полянский и Ю. К. Петрушевский, 1929). - Наряду с мембранной теорией проницае-' мости, выдвигается фазовая теория, придающая большое значение в распределении веществ между клеткой и средой, растворению их и связыванию в протоплазме (сов. учёные Д. Н. Насонов, В. Я. Александров, А- С. Трошин). Изучение реакции протоплазмы клеток на воздействие разнообразных физич. и хи-мцч. агентов привело к обнаружению явлений паранекроза и к разработке денатурационной теории повреждения и возбуждения (Д. Н. Насонов и В- Я. Александров. 1940), согласно к-рой в этих процессах ведущее значение имеют обратимые изменения в структуре белков протоплазмы. С помощью вновь разработанных цитохнмич. реакций на гистология. препаратах была установлена локализация в клетке ряда ферментов. Начиная с 1934 благодаря работам амер. учёных Р. Уэнсли и М. Герр, использовавшим метод гомогенизации (размельчения) клеток и фракционного центрифугирования, началось извлечение из клеток отдельных компонентов ядер, хлоропластов, митохондрин, мпкросом и изучение их химического и ферментативного состава. Однако существенные успехи в расшифровке функции клеточных структур достигнуты лишь в современный период развития Ц. после 50-х гг.

  • 1076. Основы этики ученого
    Другое Биология

    Генная инженерия возникла в 1970-е гг. как раздел молекулярной биологии, связанный с целенаправленным созданием новых комбинаций генетического материала, способного размножаться (в клетке) и синтезировать конечные продукты. Решающую роль в создании новых комбинаций генетического материала играют особые ферменты (рестриктазы, ДНК-лигазы), позволяющие рассекать молекулу ДНК на фрагменты в строго определенных местах, а затем «сшивать» фрагменты ДНК в единое целое. Только после выделения таких ферментов стало практически возможным создание искусственных гибридных генетических структур рекомбинантных ДНК. Рекомбинантная молекула ДНК содержит искусственный гибридный ген (или набор генов) и «вектор-фрагмент» ДНК, обеспечивающий размножение рекомбинированной ДНК и синтез ее конечных продуктов белков. Все это уже происходит в клетке-хозяине (бактериальной клетке), куда вводится рекомбинированная ДНК.

  • 1077. Особенности безусловных рефлексов
    Другое Биология

    Два помета щенков были разделены на две группы и воспитаны в резко различных условиях.Одну группу воспитывали на свободе, другую в условиях изоляции от внешнего мира (в закрытом помещении). Когда щенки выросли, оказалось, что они резко отличаются друг от друга по поведению. Те, которых воспитывали на свободе, не обладали пассивно-оборонительной реакцией, те же, которые жили в условиях изоляции, обладали ею в резко выраженной форме. Академик И. П. Павлов объясняет это тем, что все щенки в определенном возрасте своего развития проявляют рефлекс первичной естественной осторожности на все новые для них раздражители. По мере знакомства с окружающей средой у них происходит постепенное торможение этого рефлекса и переключение его в ориентировочную реакцию. Те же щенки, которые в период своего развития не имели возможности познакомиться со всем многообразием внешнего мира, не изживают этот щенячий пассивно-оборонительный рефлекс и остаются на всю жизнь трусливыми. Проявление активно-оборонительной реакции было изучено на собаках, воспитывающихся в питомниках, т.е. в условиях частичной изоляции, и у любителей, где щенки имеют возможность больше соприкасаться с многообразием внешнего мира. Собранный по этому вопросу большой материал (Крушинский) показал, что собаки, воспитывающиеся в питомниках, обладают менее выраженной активно-оборонительной реакцией, чем собаки, воспитывающиеся у частных лиц. Подрастающие щенки в питомниках, куда ограничен доступ посторонних лиц, имеют меньше возможностей к развитию активно оборонительной реакции, чем щенки, воспитывающиеся у любителей. Отсюда и то различие в активно-оборонительной реакции, которое наблюдается у собак, обеих этих групп, воспитанных в разных условиях. Приведенные примеры подтверждают огромную зависимость формирования пассивно- и активно-оборонительных реакций от условий воспитания щенка, а также и изменяемость сложного безусловно-рефлекторного поведения под влиянием тех внешних условий, в которых живет и воспитывается собака. Эти примеры указывают на необходимость внимательного отношения к условиям воспитания щенков. Изолированные или частично изолированные условия воспитания щенков способствуют формированию собаки с пассивно-оборонительной реакцией, что непригодно для некоторых видов службы собак. Создание правильных условий воспитания щенков, которые обеспечивали бы им постоянное знакомство со всем многообразием внешнего мира и давали возможность щенку проявлять свою активно-оборонительную реакцию (первые проявления которой начинаются уже в полтора-два месяца), помогает выращиванию собаки с развитой активно-оборонительной реакцией и отсутствием пассивно-оборонительной. Однако необходимо иметь в виду, что у отдельных собак, воспитывающихся в одних и тех же условиях, наблюдается различие в проявлении оборонительных реакций, что зависит от врожденных индивидуальных особенностей, свойственных родителям. Поэтому, улучшая условия воспитания щенков, необходимо обращать особое внимание и на подбор родителей. Безусловно нельзя использовать в качестве производителей для получения служебных собак животных с пассивно-оборонительной реакцией. Мы рассмотрели роль индивидуального опыта собаки в формировании сложного безусловно-рефлекторного оборонительного поведения. Однако формирование и других безусловных рефлексов в ответ на определенные раздражители находится в тесной зависимости от индивидуального опыта собаки. Возьмем для примера пищевой безусловный рефлекс. Каждому должно казаться очевидным, что пищевая реакция собаки на мясо является безусловным рефлексом. Однако опыты, проведенные одним из учеников академика И. П. Павлова, показали, что это не так. Оказалось, что собаки, воспитанные на рационе, лишенном мяса, при даче им в первый раз куска мяса не реагировали на него как на съедобное вещество. Однако стоило такой собаке положить один-два раза кусок мяса в рот, как она его проглатывала и после этого уже реагировала на него, как на пищевое вещество. Таким образом, проявление пищевого рефлекса даже на такой, казалось бы натуральный, раздражитель, как мясо, требует хотя и очень короткого, но все же индивидуального опыта.

  • 1078. Особенности движения амфибий
    Другое Биология

    Представители некоторых видов квакш проводят определенную часть своей жизни в кронах деревьев. Эти небольшие и ловкие амфибии оснащены замечательным комплексом устройств для совершения виртуозных прыжков. Кончики их пальцев вооружены специальными дисками или пластинками, которые действуют как присоски. Благодаря ним лягушки удерживаются на гладкой поверхности ствола, ветки, древесного листа, могут прогуливаться по гладкой стене и даже висеть вниз головой. Они так легко и непринужденно перепрыгивают с листа на лист, что некоторые пернатые по сравнению с ними кажутся неуклюжими. А чтобы сцепление присосок с поверхностью было надежным, в комплекте для передвижения еще предусмотрены дополнительные устройства и механизмы. Во-первых, квакшам даны специальные мышцы, которые делают диски плоскими по отношению к гладким поверхностям прикрепления, а также позволяют подгонять диски к рельефу шероховатой поверхности. При этом происходит полное совпадение выступов на подушечках с мельчайшими впадинами места прикрепления. Во-вторых, их кожа на горле и животе, да и сами диски обладают железками, выделяющую липкую жидкость. Она обеспечивает капиллярные силы сцепления частей тела с гладкими поверхностями. Причем значительная площадь живота, покрываемая этой жидкостью, также служит отличной присоской. Такие устройства и механизмы прилипания позволяют лягушкам передвигаться даже по таким скользким поверхностям, как мокрое стекло.

  • 1079. Особенности жизнедеятельности осьминогов
    Другое Биология

    У головоногих есть только голова да «руки-ноги», а туловище отсутствует, поэтому необходимые для жизни органы разместились в голове. В результате все оказалось компактно и на своем месте. У морского «чуда-юда» есть небольшой рот с черным и кривым, как у по пугая, клювом и мускулистая глотка, от которой через мозг тянется к желудку узкий пищевод. Узкий он потому, что для широкого пищевода места в голове не нашлось, в результате головоногие при их-то большом аппетите целиком могут за один раз проглотить только очень маленькую живность, размером не более муравья. А за такими малявками надо день и ночь гоняться и все равно голодным останешься. И плохо пришлось бы нашим моллюскам, но Создатель изначально для каждой твари все устроил разумно и предусмотрительно. Мясистый язык головоногих покрыт полусферическим роговым чехлом и весь усажен мельчайшими зубчиками, с помощью которых они тщательно перетирают пойманных рыб и крабов, превращая их в пюре. Оно смачивается во рту слюной и без препятствий попадает по узкому пищеводу в желудок. Вкус пищи осьминоги распознают главным образом не языком, а «руками». Вся внутренняя поверхность щупалец и каждая присоска участвует в ее дегустации. Чтобы узнать, соответствует ли его вкусу «предлагаемое блюдо», осьминог пробует его кончиками щупалец. Если это съедобный кусочек, то он отправляет его в рот. Чувство вкуса у осьминога настолько тонко, что он, вероятно, и врагов распознает на вкус. Американский океанолог Мак-Гинити провел однажды такой опыт. Около спрута, жившего в большом аквариуме, он выпустил из пипетки капельку воды, взятую в другом аквариуме, где плавала мурена злейший враг осьминогов. И как же повел себя огромный спрут? Он побагровел и пустился наутек. Есть у осьминогов и печень, и поджелудочная железа, поэтому пищеварительные соки довольно-таки быстро, всего лишь за четыре часа, переваривают пищу, в то время как у других хладнокровных обитателей моря этот процесс затягивается на многие часы. Но вот что самое поразительное: у головоногих не одно, а три сердца. Одно гонит кровь по телу, а два других насыщают ее кислородом, проталкивая через жабры. И кровь у них тоже необычная голубая, такая же, как у пауков, скорпионов и речных раков. Синеватый цвет придает ей медь, входящая в ее состав.

  • 1080. Особенности жизненного цикла жгутиковых
    Другое Биология

    Размеры и форма жгутиконосцев довольно разнообразны: оно часто бывает яйцевидным, целендрическим, шаровидным, бутылковидным и т.п. Иногда тело может приобретать различные выросты и принимать причудливую форму. Цитоплазма делится на экто- и эндоплазму. У некоторых цитоплазма снаружи ограничена лишь элементарной мембраной. У других наружный слой эктоплазмы уплотняется и образует пелликулу. От переднего полюса тела берут начало жгутики. Длина жгутиков варьирует в широких пределах от не многих до нескольких десятков микрон. Если жгутиков два, то нередко лишь один выполняет локомоторную функцию, тогда как второй неподвижно тянется вдоль тела или выполняет функцию руля. У многих растительных жгутиконосцев (эвглены, панцирные жгутиконосцы) имеются особые аппараты, служащие для восприятия световых раздражений, их называют «глазными пятнами» или стигмами. Жгутики служат не только для движения, но и способствует захвату пищи. Движением жгутика в окружающей воде вызывается водоворот, благодаря которому мелкие взвешенные в воде частички (в т.ч. бактерии) увлекаются к основанию жгутика. Здесь у некоторых жгутиконосцев, питающихся твердой пищей, имеется небольшое отверстие в пелликуле клеточный рот, ведущий в довольно глубокий канал глотку, вдающийся внутрь тела. Пища попадает в рот и глотку, и далее эндоплазме образуется пищеварительная вакуоль, в полости которой и происходит переваривание. У других видов клеточной глотки нет и у основания жгутика имеется участок липкой цитоплазмы, лишенный пелликулы, через него и происходит восприятие пищи. Не переваренные остатки пищи выбрасываются из тела простейшего где-либо вблизи заднего конца тела. Питание твердой пищей получило название анимального. Есть немалое число видов, питающиеся жидкой органической пищей, усваивая ее всей поверхностью тела. Такой способ питания называется сапрофитным. Обширные группы жгутиконосцев, а именно растительные жгутиконосцы способны к фотосинтезу. Зеленый пигмент хлорофилл локализуется внутри особых тел хроматофоров, имеющих такое же ультрамикроскопическое строение, как и хлоропласты высших зеленых растений. Некоторые аутотрофные жгутиконосцы переходят к сапрофитному питанию и могут терять при этом зеленую окраску. В теле жгутиконосцев откладываются разного рода питательные вещества. Это могут быть капельки жироподобных веществ, разбросанные в цитоплазме, включения полисахарида гликогена, а у окрашенных растительных жгутиконосцев зерна крахмала или близкого к нему углевода парамила. Осморегуляторная и отчасти выделительная функции выполняются у жгутиконосцев, как и у саркодовых, сократительными вакуолями, которые имеются у свободноживущих пресноводных форм и отсутствуют у большинства морских и всех паразитических видов. Клеточное ядро в большинстве случаев присутствует у жгутиконосцев в единственном числе, но существует также двуядерные и многоядерные виды, причем иногда число ядер может достигать сотни и тысячи.