Методическое пособие по предмету Физика

  • 21. Електровимірювальні прилади. Техніка електричних вимірювань
    Учебники, методички Физика

    Номер запитання, завданняЗапитання, завданняНомер відповіді

    1. Для чого призначені електровимірювальні прилади?
    2. Опишіть побудову та принцип дії стрілочного електровимірювального приладу?
    3. Перелічіть основні величини, якими характеризується електровимірювальний прилад.
    4. Що розуміється під межею вимірювання приладу?
    5. Як визначити ціну поділки приладу?
    6. Як визначити чутливість приладу?
    7. Що розуміється під показанням приладу?
    8. Як визначити абсолютну похибка приладу?
    9. Як визначити відносну похибку приладу?
    10. Що розуміється під наведеною похибкою приладу?
    11. Що розуміється під класом точності приладу?
    12. У разі вірного виконання завдання непар пар = 2 Таблиця 9.1а Номер відповідіВідповідь
    13. Як різниця між показанням приладу та дійсним значенням вимірюваної фізичної величини: = А Ад.
    14. Відношення максимальної абсолютної похибки (установлюваної при проектуванні приладу) до межі вимірювання приладу (виражене у відсотках): .
    15. Значення фізичної величини, яке вимірив прилад (визначається як добуток ціни поділки приладу на кількість поділок, на яке відхилилася стрілка приладу при вимірюванні): А = Сп n .
    16. Як відношення абсолютної похибки до дійсного значення вимірюваної фізичної величини (виражене у відсотках): .
    17. Відношення абсолютної похибки до межі вимірювання приладу (виражене у відсотках): .
    18. Складається з вимірювального механізму, поміщеного в корпус, і допоміжних частин (затиски для підключення, перемикачі меж вимірювань, блок живлення, коректор). Вимірювальний механізм складається з рухомої й нерухомої частин та має шкалу з певною кількістю поділок. Принцип дії вимірювального механізму може бути заснований на явищі електромагнетизму, електромагнітної сили або теплової дії струму. У результаті цих явищ виникає обертаючий момент, що повертає рухому частину вимірювального механізму разом з покажчиком (стрілкою). Стрілка відхиляється на кут, прямо пропорційний значенню вимірюваної фізичної величини. У протидію обертаючому моменту (електромагнітним або механічним шляхом) створюється однаковий за значенням і протидіючий момент, тому що інакше стрілка буде відхилятися до кінця шкали при будь-якому значенні вимірюваної величини (відмінної від нуля).
    19. Межа вимірювання, ціна поділки, чутливість, показання приладу, абсолютна похибка, відносна похибка, наведена похибка, клас точності.
    20. Як відношення межі вимірювання приладу до кількості поділок на шкалі приладу: .
    21. Найбільше значення фізичної величини, яке можна вимірити приладом.
    22. Для перетворення різних електричних величин (сили струму, напруги, активних і реактивних потужностей і енергій, коефіцієнта потужності, опору, індуктивності, ємності) у візуальну форму, зручну для сприйняття.
    23. Як відношення кількості поділок на шкалі приладу до межі вимірювання приладу: .
    24. Таблиця 9.2 Номер запитання, завданняЗапитання, завданняНомер відповіді
    25. Перелічіть основні прилади, які найбільше часто використовуються для електричних вимірювань.
    26. Як класифікуються електровимірювальні прилади?
    27. Як здійснюється вибір електровимірювального приладу?
    28. Опишіть побудову та принцип дії приладу магнітоелектричної системи, указавши область використання.
    29. Опишіть побудову та принцип дії приладу електромагнітної системи, указавши область використання.
    30. Опишіть побудову та принцип дії приладу електродинамічної системи, указавши область використання.
    31. Опишіть побудову та принцип дії приладу індукційної системи, указавши область використання.
    32. Опишіть побудову та принцип дії приладу термоелектричної системи, указавши область використання.
    33. Опишіть побудову та принцип дії приладу випрямної системи, указавши область використання.
    34. У разі вірного виконання завдання непар пар = 15 Таблиця 9.2а Номер відповідіВідповідь
    35. Прилад являє собою сукупність приладу магнітоелектричної системи та термопари (двох різнорідних металів: мідь константан, залізо константан і інших). Два кінці металевих провідників, з яких складається термопара, з'єднані в загальний вузол. До цього вузла приєднаний провідник, по якому проходить вимірюваний електричний струм. У результаті теплової дії струму загальний вузол нагрівається та у ньому наводиться постійна електрорушійна сила (названа термо-е.р.с.), незалежно від роду струму. До двох інших кінців металевих провідників, з яких складається термопара, підключений вимірювальний механізм магнітоелектричної системи. При виникненні термо-е.р.с. у котушці вимірювального механізму протікає постійний струм. При протіканні електричного струму в провідниках котушки спостерігається явище електромагнітної сили. У результаті котушка, а разом з нею й стрілка приладу відхиляються, указуючи на шкалі значення вимірюваної величини. Прилади цієї системи використовуються для вимірювань у колах постійного та змінного струмів.
    36. Вимірювальний механізм приладу складається із двох котушок індуктивності (рухомої і нерухомої). При протіканні електричного струму в провідниках котушок спостерігається явище електромагнітної сили. У результаті рухома котушка (що знаходиться усередині нерухомої котушки) відхиляється на кут, пропорційний значенню вимірюваної величини. Разом із цією котушкою відхиляється стрілка приладу, указуючи на шкалі значення вимірюваної величини. Прилади цієї системи використовуються для вимірювань у колах постійного та змінного струмів.
    37. Прилад являє собою сукупність приладу магнітоелектричної системи та одного або декількох напівпровідникових випрямлячів, призначення яких живлення вимірювального механізму магнітоелектричної системи постійним струмом. Прилади цієї системи використовуються для вимірювань у колах постійного та змінного струмів для вимірювання невеликих значень фізичних величин, а також для вимірювань у колах з підвищеною частотою струму (понад 50 Гц).
    38. Вимірювальний механізм приладу складається із двох нерухомих котушок індуктивності (зсунених у просторі на кут 90 одна щодо іншої) і рухомої металевої частини (диска, циліндра), що розташовується між котушками. Одну котушку включають паралельно мережі, а іншу послідовно. Струми, що протікають у котушках, створюють два магнітних потоки, які пронизують рухому металеву частину та наводять у ній вихрові е.р.с. Під дією наведених вихрових е.р.с. у рухомій частині будуть протікати вихрові струми, тобто рухома частина зі струмом перебуває в магнітному полі котушок. У результаті спостерігається явище електромагнітної сили та рухома частина (диск, циліндр) приходить в обертання. Прилади цієї системи використовують, як правило, для вимірювання потужності та енергії в колах змінного струму.
    39. Вимірювана фізична величина, рід струму, клас точності, принцип дії, спосіб відліку та характер шкали, характер застосування та установки.
    40. Вимірювальний механізм приладу складається з котушки індуктивності з рухомим магнітопроводом, що зв'язаний зі стрілкою приладу. При протіканні електричного струму в провідниках котушки спостерігається явище електромагнетизму. У результаті магнітопровід втягується в котушку пропорційно значенню вимірюваної величини, а стрілка приладу відхиляється, указуючи на шкалі значення вимірюваної величини. Прилади цієї системи використовуються для вимірювань у колах постійного та змінного струмів.
    41. визначається вимірювана фізична величина та прилад для вимірювань (сила струму - амперметр, напруга - вольтметр, потужність - ватметр і так далі);
    42. визначається рід струму в колі (постійний, змінний);
    43. визначається необхідний клас точності приладу;
    44. визначається характер застосування та установки;
    45. визначається система приладу (магнітоелектрична, електромагнітна або інша);
    46. визначається межа вимірювання приладу;
    47. визначається ціна поділки приладу.
    48. Вимірювальний механізм приладу складається з постійного магніту, що має підковоподібну форму. Усередині магніту знаходиться котушка індуктивності, зв'язана зі стрілкою приладу. При протіканні електричного струму в провідниках котушки спостерігається явище електромагнітної сили. У результаті котушка, укріплена на осі, повертається на кут, пропорційний значенню вимірюваної величини. Разом з котушкою відхиляється стрілка приладу, указуючи на шкалі значення вимірюваної величини. Прилади цієї системи використовуються для вимірювань у колах постійного струму.
    49. Амперметр, вольтметр, ватметр, електричний лічильник, фазометр, омметр, вимірювальний міст, частотомір.
    50. Таблиця 9.3 Номер запитання, завданняЗапитання, завданняНомер відповіді
    51. Для чого призначений амперметр?
    52. Як вибрати для вимірювань амперметр?
    53. Складіть принципову електричну схему вимірювання сили струму в однофазному навантаженні.
    54. Для чого призначений вольтметр?
    55. Як вибрати для вимірювань вольтметр?
    56. Складіть принципову електричну схему вимірювання напруги на затисках однофазного навантаження.
    57. Для чого призначений ватметр?
    58. Опишіть побудову ватметра.
    59. Опишіть принцип дії ватметра.
    60. Як вибрати для вимірювань ватметр?
    61. Як визначити межа вимірювання та ціну поділки ватметра?
    62. Складіть принципову електричну схему вимірювання потужності однофазного навантаження.
    63. Складіть і опишіть принципову електричну схему включення ватметра у високовольтну однофазну мережу за допомогою вимірювальних трансформаторів напруги та струму.
    64. Як визначити коефіцієнт потужності пристрою за показаннями амперметра, вольтметра та ватметра?
    65. У разі вірного виконання завдання непар пар = 25 Таблиця 9.3а Номер відповідіВідповідь
    66. За родом струму, класом точності, характером застосування та способом установки, системою приладу, а також тому, що межа вимірювання приладу повинна перевищувати передбачуване значення активної потужності кола.
    67. Вимірювальний механізм приладу складається із двох котушок: нерухомої та рухомої, зв'язаної зі стрілкою приладу. Нерухома котушка (струмова обмотка) має невелику кількість витків і виконана із проводу з великим перетином; включається в коло послідовно. Рухома котушка (обмотка напруги) має велику кількість витків і виконана із проводу з невеликим перетином; включається в коло паралельно. Струми в котушках повинні протікати в одному напряму, щоб стрілка приладу відхилялася вправо від нуля, для цього затиски приладу зі знаком «*» поєднують у загальний вузол.
    68. Як відношення показання ватметра до добутку показань амперметра та вольтметра.
    69. Принцип дії приладу заснований на явищі електромагнітної сили, що виникає при протіканні струму в обох котушках, у результаті чого виникає обертаючий момент прямо пропорційний струмам у котушках. Сила струму в рухомій котушці пропорційна напрузі в колі, тому що вона включається паралельно. Сила струму в нерухомій котушці пропорційна силі струму в колі, тому що вона включається послідовно. Отже, обертаючий момент, що діє на рухому котушку, пропорційний активної потужності в колі.
    70. Як добуток межі по струму на межу по напрузі, як частка від ділення межі вимірювання на кількість поділок на шкалі приладу.
    71. Для вимірювання напруги в колі.
    72. За родом струму, класом точності, характером використання та способом установки, системою приладу, а також тим, що межа вимірювання приладу повинна перевищувати передбачуване значення напруги в колі.

  • 22. Електроємність. Конденсатори. Закони постійного струму
    Учебники, методички Физика

    В електростатиці вивчалась взаємодія нерухомих зарядів і поле цих зарядів електростатичне поле. При рухові зарядів виникають інші явища, виникає електричний струм. Електричним струмом називають упорядкований рух електричних зарядів. В металах електричний струм являє собою упорядкований рух електронів проти електричного поля, в електролітах іонів різних знаків у протилежних напрямках, у газах - електронів та іонів і ін. Такий струм називають струмом провідності. Якщо ж рух зарядів відбувається разом з тілом. На якому вони знаходяться, то такий струм називають конвекційним . Наприклад, конвекційний струм виникає при падінні заряджених краплин води в атмосфері під дією сили тяжіння. Рух заряджених мікроскопічних частинок під впливом електричного поля в вакуумі називають струмом в вакуумі.

  • 23. Елементи теорії відносності та основне рівняння ідеального газу
    Учебники, методички Физика

    Вперше ці положення розвинув російський вчений М. В Ломоносов. Ще задовго до нашої ери виникло вчення про найменші частинки з яких складається будь-яка речовина. Але вперше широкий розвиток атомна гіпотеза одержала в працях Ломоносова /17111765 рр./, який зробив спробу дати єдину картину всіх відомих в його час фізичних і хімічних явищ. При цьому він виходив з корпускулярного /молекулярного/ уявлення про будову матерії. Виступаючи проти пануючої в його час теорії тепловоду /гіпотези теплової рідини, місткість якої в тілі визначає ступінь його нагрітості/. М.В.Ломоносов «причину тепла» бачив у обертовому русі частинок тіла. Таким чином, Ломоносов вперше сформулював молекулярно-кінетичні уявлення.

  • 24. Емісія електронів. Електричний струм в газах
    Учебники, методички Физика

    Іскровий розряд виникає, коли напруженість поля досягає напруженості пробою (або запалювання). Для повітря при атмосферному тиску напруженість пробою рівна 30 000 В/см. А взагалі напруженість пробою залежить від роду газу, його стану та від форми електродів. Іскровий розряд має форму вигнутого каналу, що яскраво світиться. Через канал розряду проходить значний струм, тому температура досягає 104 градусів і внаслідок цього утворюються ударні хвилі і виникають звукові ефекти. Початок іскрового розряду виникає внаслідок ударної іонізації і має коливальний характер. Механізм іскрового розряду пояснюється стримерною теорією. При рекомбінації виникають ультрафіолетові промені, які викликають фотоіонізацію атомів (молекул) в різних точках простору між електродами. В цих точках починаються лавинні розряди стримери, які потім обєднуються, утворюючи іскру (рис. 4).

  • 25. Закони збереження та динаміка обертального руху
    Учебники, методички Физика

    Розглянемо один з різновидів гіроскопів - гіроскоп на карданному підвіччі (рис.2). Дисковидне тіло - гіроскоп закріплене на вісі АА, яка може обертатися навколо горизонтальної вісі ВВ, яка в свою чергу, може обертатися навколо вертикальної вісі СС. Всі 3 вісі перетинаються в одній точці Д, що є центром мас гіроскопа і зостаючись нерухомою, вісь гіроскопу може прийняти будь-який напрям в просторі. Силами тертя в підшипниках всіх трьох вісей і моментом руху кілець нехтуємо: тертя в підшипниках мале, то поки гіроскоп нерухомий, його вісі можна надати будь-який напрям. Якщо почати швидко обертати гіроскоп - (наприклад, за допомогою намотаної на вісі мотузочки) і обертати його підставку, то вісь гіроскопа зберігає своє положення в просторі незмінним. Це можна пояснити за допомогою основного закону динаміки обертального руху. Для гіроскопа, що вільно обертається, сила тяжіння не може змінити орієнтацію вісі його обертання. Бо ця сила прикладена до центру мас (центр обертання Д співпадає з центром мас), а момент сили тяжіння відносно закріпленого центра має дорівнювати нулю. Моментом сили тертя ми нехтуємо. Тому, якщо момент зовнішніх сил відносно його закріпленого центра мас дорівнює нулю, то як слідує з рівняння (11).

  • 26. Изучение законов нормального распределения и распределения Релея
    Учебники, методички Физика

    Цель работыисследование законов распределения различных случайных процессов нормального шума, гармонического и треугольного сигналов со случайными фазами, суммы случайных взаимно независимых сигналов, аддитивной смеси гармонического сигнала и шумовой помехи, проверка нормализации распределения при увеличении числа взаимно независимых слагаемых в случайном процессе.

  • 27. Инфракрасная спектроскопия и спектроскопия кругового дихроизма. Методы определения вторичной структуры белков
    Учебники, методички Физика

     

    1. Кантор Ч., Шиммел П. Биофизическая химия. Том 2: Методы исследования структуры и функции биополимеров. М: Мир, 1984
    2. Saxena V.P., Wetlaufer D.B. (1971) A new basis for interpreting the circular dichroic spectra of proteins. Proc. Natl. Acad. Sci. U.S.A.68, 969-972
    3. Сhang C.T., Wu C. -S.C., Yang J.T. (1978) Circular dichroic analysis of protein conformation: inclusion of the -turns. Anal. Biochem.91, 13-31
    4. Provencher S.W., Glockner J. Estimation of globular protein secondary structure from circular dichroism. (1981) Biochemistry 20, 33-37
    5. Hennessey J.P., Jr., Johnson W.C., Jr. (1981) Information content in the circular dichroism of proteins. Biochemistry 20, 1085-1094
    6. Compton L.A., Johnson W.C., Jr. (1986) Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication. Anal. Biochem.155, 155-167
    7. Manavalan P., Johnson W.C., Jr. (1987) Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal. Biochem.167, 76-85
    8. Venyaminov S.Yu., Kalnin N.N. (1990) Quantitative IR specrtophotometry of peptide compounds in water (H2O) solutions.I. Spectral parameters of amino acid residue absorption bands. Biopolymers 30, 1243-1257
    9. Venyaminov S.Yu., Kalnin N.N. (1990) Quantitative IR specrtophotometry of peptide compounds in water (H2O) solutions. II. Amide absorption bands of polypeptides and fibrous proteins in -, -, and random coil conformations. Biopolymers 30, 1259-1271
    10. Kalnin N.N., Baikalov I.A., Venyaminov S.Yu. (1990) Quantitative IR specrtophotometry of peptide compounds in water (H2O) solutions. III. Estimation of the protein secondary structure. Biopolymers 30, 1273-1280
  • 28. Квантово-механічна теорія будови речовини
    Учебники, методички Физика

    Потім висунув гіпотезу, що рух таких часток, як електрони, повязаний з хвильовим рухом, довжина хвилі якого має вираз аналогічний відповідному рівнянню для фотонів ? = , де m маса частки (в г); v швидкість руху частки (см/сек). Ця гіпотеза про хвильову природу електронів одержала експериментальне підтвердження, коли Девіссон і Джермер (1927 р.) і Томсон і Рід (1928 р.) незалежно один від одного показали, що пучок електронів може давати дифракційний інтерференційний ефект. Це явище можна пояснити тільки, якщо електронному пучку приписати хвильові властивості. Тому можна сказати, що не тільки світлові хвилі ведуть себе як потік малих часток (фотонів), але і потоки малих часток , таких як електрони. Це протиріччя було розвязане за допомогою принципа невизначенності Гейзенберга (1927 р.). Цей принцип можна проілюструвати ”уявним експериментом”, в якому розглядається поведінка даної системи при даних умовах. Припустимо, що електронна пушка може вистрілити один електрон, направивши його горизонтально з відомою швидкістю в абсолютно вакуумовану посудину.

  • 29. Кинематика
    Учебники, методички Физика

    Нахождение кинематических характеристик движения (, , , ) при помощи векторных формул (1), (2) рекомендуется проводить следующим образом:

    1. написать формулу (1) или (2) применительно к конкретным точкам рассматриваемого звена механизма. При этом в качестве полюса следует взять точку с известными кинематическими характеристиками движения;
    2. установить, известны или неизвестны на данном этапе решения две независимые характеристики {проекции на две оси или модуль и направляющий угол) для каждого вектора, входящего в уравнение (1) или (2). Найти значения тех независимых характеристик векторов, которые могут быть установлены из условий движения звена без решения рассматриваемого векторного уравнения;
  • 30. Кінематика і динаміка матеріальної точки
    Учебники, методички Физика

    Математика відіграє виключно важливу роль в фізиці. Без неї сучасна фізика немислима. Математика адекватний кількісний апарат для фізиків. В процесі розвитку фізика і математика взаємно збагачують одна одну. Але необхідно правильно уявляти істинну роль математики і фізики. Чиста математика має справу з абстрактними обєктами і поняттями. При побудові теорії фізика замінює реальні обєкти їх ідеалізованими моделями, що приблизно правильно передають не всі властивості реального обєкт, а тільки ті з них, які суттєві в тому колі питань, що розглядаються. Які властивості реальних обєктів суттєві, а які не відіграють помітної ролі - на це питання може відповісти тільки дослід, якому належить вирішальне слово в питанні про правильність будь-якої фізичної теорії і межах її-використання.

  • 31. Комплект лабораторного оборудования для углубленного изучения физики
    Учебники, методички Физика

    При наличии теплового движения молекул вещества, т.е. практически всегда, тело является источником электромагнитного излучения. Интенсивность этого излучения и его спектральный состав связаны с температурой. Для идеализированного абсолютного чёрного тела энергия, излучаемая с единицы поверхности в единицу времени определяется законом Стефана-Больцмана: Rэ=sT4 , где s=5.67•10-8 Вт/м2К4 - постоянная величина, Т абсолютная температура. Основанные на этом законе термометры носят название радиационных пирометров (рис.7). Строго рассчитанная доля излучения исследуемого тела выделяется входной линзой прибора и регистрируется чувствительным колориметром. Затем производится перерасчет к полному излучению со всей поверхности исследуемого тела и вносится поправка на степень «серости» тела.

  • 32. Кручение
    Учебники, методички Физика

    В Международной системе единиц (СИ) передаваемая валом мощность измеряется в ваттах (Вт), угловая скорость ? в ,вращающие моменты Мвр, а также крутящие моменты Mz в Н×М, допускаемые касательные напряжения [ в Па, полярные моменты инерции сечений Jp в , полярные моменты сопротивления Wp в , допускаемый угол закручивания [] в , модуль сдвига G в Па.

  • 33. Лекции по механике
    Учебники, методички Физика

    Кинематика устанавливает законы движения материальной точки, но не указывает причины вызвавшие это движение, а также факторы, влияющие на вариации кинематических параметров движения. Законы Ньютона, сформулированные более 300 лет назад , явились результатом обобщения большого количества наблюдений и экспериментов. Эти законы имеют фундаментальное значение и в наше время. Первый закон утверждает, что существуют такие системы отсчета, в которых всякое тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействия со стороны других тел не заставят его изменить это состояние. Свойство тела сохранять свое состояние неизменным называют инерцией, а системы отсчета, в которых выполняется этот закон, - инерциальными. Физический смысл закона состоит в том, что для механики нет различия между состоянием покоя и равномерного прямолинейного движения. Он подчеркивает относительность движения. Строго говоря,
    этот закон является чистой абстракцией, но опыт всего человечества за прошедшие три с лишним века подтверждает его справедливость. Причина изменения состояния тела, т.е. появление ускорения связана с понятием силы. Сила - количественная мера воздействия на выбранное нами тело со стороны других тел. Вообще говоря, это воздействие может быть достаточно сложным, но в этом случае его можно разложить на так называемые простые воздействия. Поэтому силой называют количественную меру простого воздействия на тело со стороны других тел, в во время действия которого тело или его части получают ускорения. Как показывает опыт, величина полученного ускорения зависит от свойств взаимодействующих тел, от расстояния между ними и от их относительных скоростей. Силу принято измерять ( в международной системе единиц СИ ) в Ньютонах ( Н ). На территории нашей страны эта система единиц является Государственным Стандартом с 1977 года. Однако до сих пор существуют метрические внесистемные единицы: грамм, килограмм и тонна. Эти единицы используются при определении веса тела. На практике для измерения величины силы используют динамометр - тарированную ( градуированную) пружину, снабженную шкалой.

  • 34. Лекции по общей физике
    Учебники, методички Физика

    Почему образуется интерференционная картина и как она выглядит помогает понять укрупненный фрагмент рисунка слева вверху. Реальный луч 2 и его отражение от зеркала З можно заменить лучем 2 и его “отражением” от изображения зеркала З в полупрозрачном зеркале - З. Это изображение и исследуемая поверхность образуют клин, пластину изменяющейся толщины. Соответственно, через окуляр наблюдаются интерференционные линии равной толщины - прямые, направленные перпендикулярно плоскости рисунка. И эти линии видны искривленными, если исследуемая поверхность не вполне плоская. При “идеально” плоской поверхности это прямые линии.

  • 35. Лекции по физике за 2 семестр
    Учебники, методички Физика

    Ещё одно соображение, повторяю, я не знаю, Максвеллу приходило это в голову или нет, но могло приходить в голову и, наверно, приходило. Для электромагнитного поля в пустоте уравнение 2. даёт: . Вот, когда пишется частная производная, имеется в виду, что контур фиксирован в пространстве, контур не движется. Смысл его такой, что, если меняется со временем (не то, что контур переехал куда-нибудь), то возникает электрическое поле. Уравнение 4*. даёт для пустого пространства , потому что в пустоте нет. Нарушается симметрия, то есть, вообще говоря, здесь было бы неплохо, если бы циркуляция по равнялась бы потоку от производной . Какая физика стоит за этим уравнением? Переменное магнитное поле создаёт электрическое поле, а переменное электрическое поле ничего не создаёт. Вот, соображения симметрии в нынешней физике очень популярны, ну, потому что это ключ ко многим проблемам, нарушение симметрии раздражает и нуждается в объяснении. На самом деле, если мы возьмём полное уравнение 4., то настоящее уравнение в пустоте даст следующее: . Уравнение 2. Фарадей открыл экспериментально, а это симметричное явление электромагнитной индукции это Максвелл высосал из пальца. Никаких экспериментальных данных для этого не было, потому что, на самом деле, этот эффект очень трудно наблюдаем (константа очень мала), и практически создать переменное электрическое поле и обнаружить возникновение магнитного поля в те времена было невозможно. Можно было сыграть на очень больших производных, короче говоря, просто двигая электрическим зарядом, заметное магнитное поле не создастся, скажем, если вы этот заряд дёргаете с частотой миллион колебаний в секунду, можно мыло бы заметить магнитное поле. Если двигать заряд, согласно уравнению 4., создастся магнитное поле, но настолько маленькое при умеренных частотах, что практически его обнаружить нельзя. Максвелл написал его по аналогии, следствием оказалось существование электромагнитных волн, о которых до Максвелла никто и не помышлял. И когда примерно через двадцать лет электромагнитные волны были обнаружены, вот тогда эта Максвелловская теория и вот это уравнение 4. были признаны, наконец, и все эти построения из гипотезы превратились в теорию.

  • 36. Лекции по физике за 3 семестр
    Учебники, методички Физика

    В жидкости молекулы нейтральны, между ними силы взаимодействия. Когда молекула жидкости вылетает (внутри жидкости на молекулу действуют силы во все стороны и в среднем они уравновешены), появляются силы, которые её затягивают обратно. Поэтому мы имеем поверхность жидкости, отделяющую воду в стакане от окружающего воздуха. Но молекулы в жидкости имеют разные скорости, и мы видели в своё время распределение молекул по скоростям (или распределение по энергиям в газе). Функция распределения имеет «хвост», и, в принципе, здесь сейчас в воздухе можно найти молекулу с любой энергией; молекулы в жидкости так же имеют функцию распределения с «хвостом», и там, в принципе, можно найти молекулу с достаточной энергией. С энергией достаточной для чего? А для того, чтобы она смогла совершить работу против сил притяжения, а эта работа заведомо конечна, и улететь. Значит, в жидкостях имеются за счёт хаотического теплового движения молекулы с энергиями большими, чем работа по преодолению сил притяжения, возникающих, когда она взлетает. Молекула, обладающая такой энергией, совершает эту работу, вылетает, при этом её кинетическая энергия убывает на какую-то величину, но всё равно она улетает. Происходит испарение жидкости, и это испарение обуславливает то, что жидкая фаза неустойчива принципиально.1) Ну, понятно почему. Допустим, быстрые молекулы улетели вот из этого хвоста распределения, но хвост отрастает всё время, если температура остаётся та же самая, хвост отрастает, и поэтому, в конце концов, они испарятся все.

  • 37. Магнітні кола при постійних намагнічуючих силах
    Учебники, методички Физика

    Якщо спочатку збільшувати силу струму до режиму насичення (рис.5.5), а потім його зменшувати, то залежність В = f (Н) уже проходить вище (відрізок 1). Для того, щоб магнітна індукція зменшилася до нуля, необхідно струм пропускати в зворотному напряму (відрізок 2). Якщо далі в зворотному напряму пропускати струм, то поступово настає насичення (відрізок 3). Якщо тепер струм зменшувати до нуля, то залежність В = f (Н) буде мати вигляд відрізка 4. Змінюємо напрям струму і при певному значенні сили струму магнітна індукція дорівнює нулю (відрізок 5). Підвищуючи силу струму далі, поступово настає насичення (відрізок 6). Таким чином, ми одержали залежність В = f (Н) у вигляді так званої петлі гістерезису.

  • 38. Межпредметная связь между физикой и биологией
    Учебники, методички Физика

    Зупинку гирі можна пояснити тільки тим, що, окрім сили тяжіння, направленной вниз, на неї діє ще якась сила, направленная вгору.При цьому виникає сила, з якою опора (у нашому прикладі дошка) діє на тіло, лежаче на ній; ця сила направлена вгору, тобто убік, протилежну силі тяжіння. Її називають силою пружності. Чим більше прогибается опора, тим більше сила пружності. Коли сила пружності стає рівній силі тяжіння, действующей на тіло, опора і тіло зупиняються.

  • 39. Методика преподавания темы "Закон всемирного тяготения" в школьном курсе физики
    Учебники, методички Физика

     

    1. Воронцов-Вельяминов Б.А. Астрономия. М.: Просвещение, 1994.
    2. Гонтарук Т.И. Я познаю мир. Космос. М.: АСТ, 1995.
    3. Громов С.В. Физика 9. М.: Просвещение, 2002.
    4. Громов С.В. Физика 9. Механика. М.: Просвещение, 1997.
    5. Кирин Л.А., Дик Ю.И. Физика 10. сборник заданий и самостоятельных работ. М.: ИЛЕКСА, 2005.
    6. Климишин И.А. Элементарная астрономия. М.: Наука, 1991.
    7. Кочнев С.А. 300 вопросов и ответов о Земле и Вселенной. Ярославль: “Академия развития”, 1997.
    8. Левитан Е.П. Астрономия. М.: Просвещение, 1999.
    9. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика 10. М.: Просвещение, 2003.
    10. Субботин Г.П. Сборник задач по астрономии. М.: “Аквариум”, 1997.
    11. Энциклопедия для детей. Том 8. Астрономия. М.: “Аванта +”, 1997.
    12. Энциклопедия для детей. Дополнительный том. Космонавтика. М.: “Аванта +”, 2004.
  • 40. Методические указания к лабораторным работам по физике (механика и термодинамика)
    Учебники, методички Физика

    Причина расширения твердых тел при нагревании - возрастание амплитуды тепловых колебаний атомов. График зависимости потенциальной энергии взаимодействия соседних атомов от расстояния между их центрами r приведен на рис. 9. Пунктиром показан уровень полной энергии E взаимного колебания атомов при данной температуре. При данной энергии Е расстояние между атомами при тепловых колебаниях изменяется от r1 до r2. Если r0<r<r1 (атомы сближаются), между атомами действуют силы отталкивания. Когда r=r0, полная энергия равна кинетической энергии теплового колебательного движения. При уменьшении r до r1 происходит переход кинетической энергии в потенциальную энергию взаимодействия атомов. Далее под действием сил отталкивания атом движется в сторону увеличения r . Его кинетическая энергия возрастает, а потенциальная - уменьшается. Когда r становится больше r0, возникают силы притяжения между атомами, кинетическая энергия атома уменьшается, а потенциальная увеличивается. В точке r=r2, полная Е энергия переходит в потенциальную. Далее под действием сил притяжения атомы начинают сближаться И весь процесс колебаний атома между точками r1 и r2 повторяется.