Методическое пособие по предмету Физика

  • 101. Физика: основные школьные формулы
    Учебники, методички Физика
  • 102. Фотоелектричний ефект
    Учебники, методички Физика

    Вентильний фотоефект це явище виникнення електрорушійної сили при освітленні контакту двох напівпровідників різного типу провідності або контакту напівпровідника з металом. На межі напівпровідників п- і р-типу виникає запірний шар. При освітленні напівпровідника га-типу, коли енергія фотонів достатня для переходу електроном запірного шару з напівпровідника «-типу у напівпровідник р-типу (рис. 9.5), відбувається накопичення електронів на зовнішній поверхні напівпровідника р-типу. Внаслідок цього між зовнішніми поверхнями напівпровідників п- і р-типу виникає електрорушійна сила. Особливістю вентильного фотоефекту є безпосереднє перетворення світлової енергії в електричну. Коефіцієнт корисної дії сучасних кремнієвих фотоелементів близько 15 %.

  • 103. Фотонна теорія світла
    Учебники, методички Физика

    При цьому головний світловий потік від лампи L, виділений діафрагмою D, падає на периферійну частинку сітчатки ока. На шляху від дзеркала Z до ока розміщено диск В з отвором. Диск приводиться в рух синхронним електродвигуном М і робить один оберт за секунду. Розмір отвору такий, що світло проходить крізь нього протягом 0,1 с і спостерігач реєструє короткочасний спалах. Зелений світлофільтр F і нейтральний фотометричний клин К дають змогу виділити досліджувану ділянку спектра і ослабити потік, що попадає в око. Для абсолютних вимірювань енергії, яка відповідає порогові зору, дзеркало Z приймають і діафрагму D освітлюють практичним повним випромінювачем Т. Спостерігач у момент спалаху на рухомій стрічці робив помітки. На ній же відмічався кожний оберт диска в момент, коли світло проходило крізь його отвір. Виявилось, що при світловому потоці, який перевищує поріг зорового відчуття, спостерігач фіксує кожний спалах, а при зменшенні потоку до величини, що відповідає порогу зорового відчуття, спостерігач фіксує не всі спалахи. Спостерігач фіксував також спалахи і при середньому потоці, меншому, ніж поріг зорового відчуття. Це зумовлено флуктуаціями кількості фотонів в окремих потоках: в одних випадках їх проходила достатня кількість, щоб викликати зорове відчуття, в інших недостатня.

  • 104. Шпоры по физике 10-11 класс
    Учебники, методички Физика

    Процесс фазового перехода из жидкого состояния в газообразное или из твердого тела в жидкое может происходить только при сообщении веществу некоторого количества теплоты. Обратные фазовые переходы сопровождаются выделением такого же количества теплоты. Количество теплоты, поступающее в систему или выделяющееся из нее, изменяет ее внутреннюю Е. Фазовые переходы идут при постоянных t которые наз t кипения и t плавления. Количество теплоты необходимое для превращения жидкости в пар или выделяемое при конденсации наз теплотой парообразования:Q=Lm, где L=?Q/m удельная теплота парообразования = количеству теплоты необходимому для превращения в пар единицы массы жидкости, находящейся при температуре кипения: [L]=1Дж/1кг. Количество теплоты, необходимое для плавления тела или выделяемое при кристаллизации наз теплотой плавления: Q=m?, где ?=?Q/m удельная теплота плавления = количеству теплоты необходимому для плавления единицы массы тела находящегося при температуре плавления: [?]=1ДЖ/1кг. Удельные теплоты парообразования и плавления наз также скрытыми теплотами, поскольку при фазовых переходах температура системы не меняется несмотря на то что теплота к ней подводится. Количество теплоты, выделяемое при сгорании топлива массой m, наз теплотой сгорания топлива Q=qm, где q=?Q/m удельная теплота сгорания топлива, величина показывающая какое количество теплоты ?Q выделяется при полном сгорании топлива массой 1 кг: [q]=1Дж/1кг. В соответствии с законом сохранения Е для замкнутой системы тел, в которой не происходит никаких превращения энергии, кроме теплообмена, количество теплоты, отдаваемое более нагретыми телами, равно количеству теплоты, получаемому более холодными. Теплообмен пркращается в состоянии термодинамического равновесия, т.е. когда температура всех тел системы становится одинаковой. Уравнение теплового балланса: В замкнутой системе тел алгебраическая сумма количеств теплоты, отданных и полученных всеми телами, участвующими в теплообмене равна нулю: Q1+Q2+...+Qn=0. В зависимости от условий задачи каждое слагаемое уравнения может быть как положительным, так и отрицательным. Общее правило знаков следующее: количество теплоты, полученное телом, считают положительным, а отданное отрицательным.

  • 105. Экзамен по физике для поступления в Бауманскую школу
    Учебники, методички Физика

    4. Тело брошено с поверхности Земли с начальной скоростью Vo под углом a к горизонту. Совмещая начало координат с начальным положением тела, определите зависимость координат x и y, а также проекций скоростей Vx и Vy от времени. Определите время t подъема тела на максимальную высоту. Сопротивление воздуха пренебрежимо мало. Ось Ox ориентирована горизонтально в направлении движения тела, ось Oy направлена вертикально вверх.

  • 106. Экзаменационные билеты по физике 11 класс
    Учебники, методички Физика

    Из этих примеров видно, что всегда надо указать тело, относительно которого рассматривается движение, его называют телом отсчета. Система координат, тело отсчета, с которым она связана, и выбранный способ измерения времени образуют систему отсчета. Рассмотрим два примера. Размеры орбитальной станции, находящейся на орбите около Земли, можно не учитывать, рассчитывая траекторию движения космического корабля при стыковке со станцией, без учета ее размеров не обойтись. Таким образом, иногда размерами тела по сравнению с расстоянием до него можно пренебречь, в этих случаях тело считают материальной точкой, Линию, вдоль которой движется материальная точка, называют траекторией. Длина части траектории между начальным и конечным положением точки называют путем (L). Единица измерения пути 1м.

  • 107. Электрические аппараты
    Учебники, методички Физика

    1. Коммутационные аппараты распределительных устройств, служащие для включения и отключения электрических цепей. К этой группе относятся рубильники, пакетные выключатели, выключатели нагрузки, выключатели высокого напряжения, разъединители, отделители, короткозамыкатели, автоматические выключатели, предохранители. Для аппаратов этой группы характерно относительно редкое их включение и отключение. Могут быть и случаи, когда такие аппараты довольно часто включаются и отключаются (например, выключатели высокого напряжения в цепях питания электрических печей).

    1. Ограничивающие аппараты, предназначенные для ограничения токов короткого замыкания (реакторы) и перенапряжений (разрядники). Режимы короткого замыкания и перенапряжений являются аварийными, и эти аппараты редко подвергаются наибольшим нагрузкам.
    2. Пускорегулирующие аппараты, предназначенные для пуска, регулирования частоты вращения, напряжения и тока электрических машин или каких-либо других потребителей электрической энергии. К этой группе относятся контроллеры, командоконтроллеры, контакторы, пускатели, резисторы и реостаты. Для аппаратов этой группы характерны частые включения и отключения, число которых достигает 3600 в час и более.
    3. Аппараты для контроля заданных электрических или неэлектрических параметров. К этой группе относятся реле и датчики. Для реле характерно плавное изменение входной (контролируемой) величины, вызывающее скачкообразное изменение выходного сигнала. Выходной сигнал обычно воздействует на схему автоматики. В датчиках непрерывное изменение входной величины преобразуется в изменение какой-либо электрической величины, являющейся выходной. Это изменение выходной величины может быть как плавным (измерительные датчики), так и скачкообразным (реле-датчики). С помощью датчиков могут контролироваться как электрические, так и неэлектрические величины.
    4. Аппараты для измерений. С помощью этих аппаратов цепи первичной коммутации (главного тока) изолируются от цепей измерительных и защитных приборов, а измеряемая величина приобретает стандартное значение, удобное для измерений. К ним относятся трансформаторы тока, напряжения, емкостные делители напряжения.
    5. Электрические регуляторы. Предназначены для регулирования заданного параметра по определенному закону. В частности, такие аппараты служат для поддержания на неизменном уровне напряжения, тока, температуры, частоты вращения и других величин
  • 108. Электричество и магнетизм
    Учебники, методички Физика

    Угол между горизонтальной составляющей вектора В и плоскостью географического меридиана называется магнитным склонением ? и измеряется при помощи деклинаторов. В результате неоднородности земного магнитного поля его вектор индукции на экваторе направлен строго горизонтально, на магнитных полюсах вертикально, а на всех остальных широтах под некоторым углом к горизонту. Этот угол называется магнитным наклонением ?, которое измеряется посредством инклинаторов. Существование магнитного наклонения приводит к тому, что северный полюс магнитной стрелки, подвешенной в северном полушарии, располагается несколько ниже южного полюса, а в южном полушарии наоборот (на глаз это незаметно). Такую ориентацию можно описать векторной суммой горизонтальной и вертикальной составляющих вектора индукции магнитного поля Земли (рис. 2). Вертикальную составляющую этого поля измеряют при помощи упомянутого выше инклинатора, а горизонтальную при помощи тангенс-гальванометра. В стрелочном инклинаторе главной частью является магнитная стрелка с горизонтальной осью, проходящей через центр тяжести стрелки. Если вертикальную плоскость качания стрелки совместить с плоскостью магнитного меридиана, магнитная ось стрелки устанавливается по направлению вектора напряженности магнитного поля. Магнитное наклонение отсчитывается по вертикальному кругу с делениями. Более точные индукционные инклинаторы позволяют измерить наклонение с точностью до 0,1?. В таком приборе индукционная катушка вращается вокруг оси, лежащей в плоскости ее витков. Прибор дает возможность ориентировать ось в любом направлении. Если она не совпадает с вектором напряженности магнитного поля Земли, то магнитный поток сквозь контур катушки при ее вращении меняется, и в ней индуцируется эдс. При совпадении оси вращения с направлением вектора напряженности поток сквозь ее контур остается постоянным, эдс не индуцируется, и включенный в цепь катушки чувствительный гальванометр не дает отклонений. Угол между горизонтальной плоскостью и осью катушки при отсутствии отклонений в гальванометре отсчитывается по вертикальному кругу, соединенному с осью катушки. Точные измерения показали, что в настоящее время горизонтальная составляющая вектора магнитной индукции B на поверхности планеты принимает значения от 0 до 41 мкТл, а полный вектор индукции B0 изменяется в пределах от +62 до 73 мкТл.

  • 109. Электрооборудование сельского хозяйства
    Учебники, методички Физика

    мм2АПВодножильный с поливинилхлоридной изоляцией для прокладки в трубах, пустотах несгораемых конструкций, плинтусах, на лотках, на тросах, на изоляторах2,5... 120АППВдвух или трехжильный плоский с поливинилхлоридной изоляцией с разделительным основанием для открытой прокладки по несгораемым конструкциям, на роликах, изоляторах, а также под штукатуркой2,5... 6,0АППВСдвух или трехжильный плоский с поливинилхлоридной изоляцией без разделительного основания для скрытой прокладки в трубах под штукатуркой, в осветительных сетях для прокладки в каналах2,5... 6.0АПНодно-, двух-и трехжильный с нейритовой резиновой изоляцией для скрытой прокладки под штукатуркой и для открытой прокладки приклеиванием2,5…4АПРВодножильный с резиновой изоляцией в поливинилхлоридной оболочке для открытой прокладки на роликах, для прокладки в трубах и коробах2,5... 6.0АПРТОодно-,двух-, трех- и четырехжильные с резиновой изоляцией в оплетке из хлопчатобумажной пряжи, пропитанной противогнилостным составом для прокладки в стальных трубах2,5...400АППодножильный с изоляцией из полиэтилена для прокладки в трубах из трудносгораемого материала и в каналах строительных конструкций2,5...35АППРодно-и двухжильный с резиновой изоляцией пониженной горючести для прокладки по деревянным основаниям2,5…4АПРНодножильный с резиновой изоляцией в хлоропреновой оболочке пониженной горючести для прокладки в трубах, каналах строительных конструкций, в наружных установках2,5...95АТПРФдвух- и трехжильный с резиновой изоляцией в металлической оболочке для прокладки в наружных установках2,5…4

  • 110. Электрооборудование станций и подстанций
    Учебники, методички Физика

    Для того, чтобы определить расчетные рабочие токи присоединенной ВЛ и КЛ, необходимо найти распределение тока в сети для заданных нагрузок при нормальном режиме и при отключении одной из линии. Отношение расчетных токов утяжеленного и нормального режимов зависит от схемы сети: Обычно оно равно 1,5…2,0. Расчетные рабочие токи сборных шин зависят от рабочих токов присоединений, их взаимного расположения в РУ, а также от вида сборных шин (одиночные, двойные, кольцевые и тому подобное) и режима установки. Для выбора площади сечения шин по утяжеленному режиму следует выявить ожидаемые рабочие токи на отдельных участках РУ при наиболее неблагоприятных условиях. Если рабочие токи на этих участках резко различны, шины могут быть выбранными «ступеньками» с площадью сечений, соответствующих рабочим токам участков. Площадь сечения шин должна быть достаточной для передачи рабочего тока наиболее мощного агрегата. В ЗРУ до 20 кВ включительно шины выполняют из полос прямоугольного сечения. Они более экономичны, чем с круглыми, так как при равной площади сечения имеют большую боковую поверхность охлаждения, меньший коэффициент поверхностного эффекта и больший момент сопротивления (по одной оси). Наибольшие размеры сечения однополосных алюминиевых шин 12010 мм IДОП = 2070 А. При больших токах применяют многополосные шины пакеты из 2х-3х полос на фазу. В многополосных шинах на переменном токе вследствие эффекта близости ток по сечению распространяется неравномерно. В 3х полосных пакетах в крайних полосах протекает до 40%, а в средней - 20% полного тока фазы.

  • 111. Электропривод с шаговым двигателем
    Учебники, методички Физика

    Основой устройства (рис. 30) является микроконтроллер U1 типа AT90S2313 фирмы Atmel. Сигналы управления обмотками двигателя формируются на портах PB4 PB7 программно. Для коммутации обмоток используются по два включенных параллельно полевых транзистора типа КП505А, всего 8 транзисторов (VT1 VT8). Эти транзисторы имеют корпус TO-92 и могут коммутировать ток до 1.4А, сопротивление канала составляет около 0.3 ома. Для того, чтобы транзисторы оставались закрытыми во время действия сигнала «сброс» микроконтроллера (порты в это время находятся в высокоимпедансном состоянии), между затворами и истоками включены резисторы R11 R14. Для ограничения тока перезарядки емкости затворов установлены резисторы R6 R9. Данный контроллер не претендует на высокие скоростные характеристики, поэтому вполне устраивает медленный спад тока фаз, который обеспечивается шунтированием обмоток двигателя диодами VD2 VD5. Для подключения шагового двигателя имеется 8-контактный разъем XP3, который позволяет подключить двигатель, имеющий два отдельных вывода от каждой обмотки (как, например, ДШИ-200). Для двигателей с внутренним соединением обмоток один или два общих контакта разъема останутся свободными. Необходимо отметить, что контроллер может быть использован для управления двигателем с большим средним током фаз. Для этого только необходимо заменить транзисторы VT1 VT8 и диоды VD2 VD5 более мощными. Причем в этом случае параллельное включение транзисторов можно не использовать. Наиболее подходящими являются МОП-транзисторы, управляемые логическим уровнем. Например, это КП723Г, КП727В и другие. Стабилизация тока осуществляется с помощью ШИМ, которая тоже реализована программно. Для этого используются два датчика тока R15 и R16. Сигналы, снятые с датчиков тока, через ФНЧ R17C8 и R18C9 поступают на входы компараторов U3A и U3B. ФНЧ предотвращают ложные срабатывания компараторов вследствие действия помех. На второй вход каждого компаратора должно быть подано опорное напряжение, которое и определяет пиковый ток в обмотках двигателя. Это напряжение формируется микроконтроллером с помощью встроенного таймера, работающего в режиме 8-битной ШИМ. Для фильтрации сигнала ШИМ используется двухзвенный ФНЧ R19C10R22C11. Одновременно резисторы R19, R22 и R23 образуют делитель, который задает масштаб регулировки токов фаз. В данном случае максимальный пиковый ток, соответствующий коду 255, выбран 5.11А, что соответствует напряжению 0.511В на датчиках тока. Учитывая тот факт, что постоянная составляющая на выходе ШИМ меняется от 0 до 5В, необходимый коэффициент деления равен примерно 9.7. Выходы компараторов подключены к входам прерываний микроконтроллера INT0 и INT1. Для управления работой двигателя имеются два логических входа: FWD (вперед) и REW (назад), подключенных к разъему XP1. При подаче НИЗКОГО логического уровня на один из этих входов, двигатель начинает вращаться на заданной минимальной скорости, постепенно разгоняется с заданным постоянным ускорением. Разгон завершается, когда двигатель достигает заданной рабочей скорости. Если подается команда изменения направления вращения, двигатель с тем же ускорением тормозится, затем реверсируется и снова разгоняется. Кроме командных входов, имеются два входа для концевых выключателей, подключенных к разъему XP2. Концевой выключатель считается сработавшим, если на соответствующем входе присутствует НИЗКИЙ логический уровень. При этом вращение в данном направлении запрещено. При срабатывании концевого выключателя во время вращения двигателя он переходит к торможению с заданным ускорением, а затем останавливается. Командные входы и входы концевых выключателей защищены от перенапряжений цепочками R1VD6, R2VD7, R3VD8 и R4VD9, состоящими из резистора и стабилитрона. Питание микроконтроллера формируется с помощью микросхемы стабилизатора 78LR05, которая одновременно выполняет функции монитора питания. При понижении напряжения питания ниже установленного порога эта микросхема формирует для микроконтроллера сигнал «сброс». Питание на стабилизатор подается через диод VD1, который вместе с конденсатором C6 уменьшает пульсации, вызванные коммутациями относительно мощной нагрузки, которой является шаговый двигатель. Питание на плату подается через 4-контактный разъем XP4, контакты которого задублированы. Демонстрационная версия программы позволяет осуществлять разгон и торможение двигателя с постоянным ускорением, а также вращение на постоянной скорости в полношаговом или полушаговом режиме. Эта программа содержит весь необходимый набор функций и может быть использована как базовая для написания специализированных программ. Поэтому имеет смысл рассмотреть ее структуру более подробно. Главной задачей программы является формирование импульсных последовательностей для 4-х обмоток двигателя. Поскольку для этих последовательностей временные соотношения являются критичными, формирование выполняется в обработчике прерывания таймера 0. Можно сказать, основную работу программа делает именно в этом обработчике. Блок-схема обработчика приведена на рис. 31.

  • 112. Электротехника с основами электроники
    Учебники, методички Физика

    Для повышения cos (уменьшения реактивной составляющей активно-индуктивной нагрузки) промышленных установок применяют различные меры, которые сводятся или к уменьшению потребления реактивной мощности QL, или к компенсации реактивной мощности QL мощностью QС. Так как емкостной ток Ic находится в противофазе с индуктивной составляющей тока нагрузки, то реактивная составляющая тока в линии IP=IL-IC уменьшается. В результате ток в линии, угол сдвига фаз и реактивная мощность Q=UIsin уменьшается, а cos увеличивается. Для осуществления этого мероприятия параллельно нагрузке подключают батареи конденсаторов или синхронные компенсаторы (синхронный электродвигатель в режиме перевозбуждения). Реактивная мощность по-прежнему поступает к потребителю, но уже не от генераторов, расположенных иногда за сотни километров, а от источника, находящегося рядом (например конденсатор). Таким образом, происходит освобождение элементов системы электроснабжения от реактивной составляющей тока нагрузки.

  • 113. Элементы кинетической теории газов и вероятностные модели
    Учебники, методички Физика

    Отсюда немедленно следует, что установление термодинамического равновесия в такой двойной системе ПТДС означает уравнивание средних значений кинетической энергии молекул идеальных газов, заполняющих каждую из частей нашей сдвоенной системы. И, таким образом, выравнивание температур при тепловом контакте двух ПТДС означает выравнивание средних значений кинетической энергии составляющих их идеальных газов. Температура и средняя энергия оказывается пропорциональными друг другу. Точнее, под температурой следует понимать характеристику или функцию состояния термодинамической системы, пропорциональную средней энергии молекул газа-наполнителя.

  • 114. Энергетическая электроника
    Учебники, методички Физика

    Одноканальная система управления может быть выполнена и для трехфазного выпрямителя. В одноканальных многофазных системах устройство сравнения, входящее в состав ФСУ, работает с частотой в m2 раз большей, чем в многоканальных системах, что требует в дальнейшем распределения импульсов управления по каналам. Генератор линейно-изменяющегося напряжения (ГЛИН) может быть выполнен или в одноканальном, или в многоканальном варианте. В рассматриваемой схеме, предназначенной для трехфазного мостового несимметричного выпрямителя, ГЛИН выполнен в одноканальном варианте. Схема работает следующим образом. ГЛИН запускается в моменты появления на тиристорах прямого напряжения, т.е. в точках естественной коммутации. Запуск ГЛИН обеспечивается синхронизатором (С). С выхода ГЛИН пилообразное напряжение подается на пороговое устройство (ПУ), которое срабатывает при достижении напряжения пилы значения Uп. Напряжение с выхода порогового устройства через дифференцирующую цепь (ДЦ) поступает на схемы совпадения (СС), куда также подается соответствующий импульс синхронизатора. При совпадении импульсов с выхода синхронизатора и дифференцирующей цепи выходной каскад ВК вырабатывает импульс управления, поступающий на отпирание тиристора соответствующей фазы (рис.5.1, б). Сдвиг импульса управления по фазе осуществляется путем изменения наклона пилообразного напряжения ГЛИН с помощью управляемого стабилизатора тока (УСТ). По такому же принципу может быть построена и схема управления для трехфазного мостового симметричного выпрямителя.

  • 115. Энергетическое обеспечение производства
    Учебники, методички Физика

    . Охлаждения пара в поверхностных конденсаторах (конденсаторы паросиловых станций, кислородных станций, компрессорных и др.);

    1. Охлаждение кладки технологических печей;
    2. Потребители, охлаждающие продукт путем непосредственного поливания водой. Эти потребители используют воду для охлаждения кокса, агломерата, стальных слитков, товарного чугуна. Для этой группы потребителей нормы водопотребления, как правило, определяются по максимальной производительности агрегата и сохраняются во все время его работы.
    3. Потребители, охлаждающие детали производственного оборудования непосредственным поливом. Водопотребители этой группы используют воду для охлаждения подшипников, валков прокатных станов, кузнечного оборудования, периодического полива кожухов доменных печей и др.
    4. Потребители, осуществляющие охлаждение и промывку газа. Потребители этой группы используют воду для очистки колошниковых газов в доменном цехе, газов в сталеплавильных агрегатах и на газогенераторных станциях. Для этой группы водопотребителей нормы водопотребления определяются в зависимости от требований, предъявляемых к очищенному газу, от конструкции газоочистных устройств, а также от количества и характера загрязнений, вносимые газом в воду.
    5. Потребители, осуществляющие приготовление растворов. Они используют воду в травильных процессах и для изготовления известковых растворов. Нормы водопотребления в данном случае зависят только от технологических требований к качеству воды и мало зависят от температуры.
    6. Потребители, использующие воду как движущую среду для удаления сыпучих материалов. Потребители этой группы осуществляют гидрозолоудаление от ТЭЦ и ПВС, гидравлическое удаление окалины в прокатном производстве и транспортировку металлосодержащих шлаков на утилизационную установку. Нормы водопотребления зависят от количества, размера и плотности фракции транспортируемых отходов. Температура воды играет здесь незначительную роль, также как и ее качество.
    7. Потребители, использующие воду для питания котлов силовых установок. К данной группе относятся котлы ТЭЦ и ПВС. Нормы водопотребления в этом случае зависят от качества воды, от применяемого способа улучшения этого качества, от наличия и возврата конденсата.
    8. Потребители, использующие воду для создания водяных завес и экранов. Для улучшения условий труда в горячих производствах применяются экраны, поглощающие лучистую теплоту, исходящую от агрегатов с очень высокой температурой.
  • 116. Явление электромагнитной индукции
    Учебники, методички Физика

    Рассмотрим прямой проводник, движущийся с постоянной скоростью v в однородном магнитном поле индукцией B (рис. 4.10.4). Положительные и отрицательные свободные заряды движутся вместе с проводником со скоростью v относительно магнитного поля. На эти заряды действует сила Лоренца FЛ, направленная вдоль проводника. Под действием силы Лоренца свободные заряды смещаются и накапливаются на концах проводника. Таким образом, на концах проводника возникает разность потенциалов, а внутри проводника создается электрическое поле напряженности E. Это поле действует на заряды электрическими силами Fэл. Накопление зарядов на концах проводника приводит к увеличению напряженности электрического поля, и тем самым увеличению силы Fэл. При определенной разности потенциалов на концах проводника электрическая сила становится равной силе Лоренца: , и перераспределение зарядов прекращается. Таким образом, сила Лоренца, двигающая заряды вопреки действию электрических сил, имеет неэлектрическую природу, т.е. является сторонней силой, которая приводит к возникновению ЭДС на концах проводника.