Информация
-
- 5761.
Биотрансформация ксенобиотиков
Биология
- 5761.
Биотрансформация ксенобиотиков
-
- 5762.
Биофизик Чижевский и его учение об аэроионах
Физика
- 5762.
Биофизик Чижевский и его учение об аэроионах
-
- 5763.
Биофизик Чижевский и его учение об аэроионах
Медицина, физкультура, здравоохранение Используя технологию, предложенную нашим выдающимся соотечественником Александром Леонидовичем Чижевским, мы не просто заботимся о своем здоровье и здоровье своих близких. Применяя люстру Чижевского, мы вносим малый, но все-таки вклад в возрождение биосферы среды обитания, с которой связаны наши жизни и жизни наших потомков.Литература
- Разрешение Наркомздрава СССР на применение аэроионотерапии, 1931 г.
- Методические указания по лечебному применению ионизированного воздуха (аэроионотерапия). Утверждены Управлением спец. медицинской помощи Минздрава СССР 11 мая 1959 г.
- ГОСТ 12. 1. 005-76. Воздух рабочей зоны. Общие санитарно-гигиенические требования.
- Указания по компенсации аэроионной недостаточности в помещениях промышленных предприятий и эксплуатации аэроионизаторов. Утверждены Минздравом СССР 14. 02. 77 г.
- ССБТ ОСТ 11. 296. 019-78. Аэроионизаторы и методы компенсации аэроионной недостаточности. ВНИИ Электростандарт, 1979 г.
- Санитарно-гигиенические нормы допустимых уровней ионизации воздуха производственных и общественных помещений № 2152-80 от 12. 02. 80 г.
- Чижевский А. Л. Аэроионизация как физиологический, профилактический и терапевтический фактор и как новый санитарно-гигиенический метод кондиционированного воздуха. 1933 г.
- Чижевский А. Л. Осаждение микроорганизмов воздуха внутри помещений при помощи аэроионного потока. 1934 г.
- Чижевский А. Л. Теоретические основы работы электроэффлювиального ионизатора. 1939 г.
- Чижевский А. Л. Руководство по применению ионизированного воздуха в промышленности, сельском хозяйстве и в медицине. 1969 г.
- Чижевский А. Л. Аэроионификация в народном хозяйстве. 1989 г.
- Васильев Л. Л. Теория и практика лечения ионизированным воздухом. 1953 г.
- Минх А. А. Ионизация воздуха и ее гигиеническое значение. 1958 г.
- Лившиц М. Н. Аэроионификация: практическое применение. 1990 г.
- 5763.
Биофизик Чижевский и его учение об аэроионах
-
- 5764.
Биофизика
Физика Massil on kaks omadust: inerts ja gravitatsioon. Huvitaval kombel on need kaks omadust alati võrdelised ja massi suurust saab määrata nii ühe kui teise kaudu. Kaalumine on massi mõõtmise viis gravitatsioonijõu kaudu. Mitu N kaalub keha massiga 1 kg? Kaal on raskusjõud, millega Maa tõmbab keha. Raskusjõud annab massile 1 kg kiirenduse 9.8 m s-2, sel ajal kui 1 N annab kiirenduse vaid 1 m s-2. Seega, mass 1 kg kaalub 9.8 N. Sama mass 1 kg kaaluks Kuu peal umbes kuus korda vähem, seega umbes 1.6 N. Keha kaal sõltub ka asukohast Maal (ekvaatoril on Maa pöörlemisest tulenev tsentrifugaaljõud suurem ja see vähendab kaalu). Kaalu vähendab ka õhu üleslüke. Seega, üks kilogramm udusulgi kaalub vähem kui 1 kg rauda, kui ei arvestata õhu üleslükke parandit. See parand on seda suurem, mida lähdasemad on kaalutava keha ja õhu tihedused, kuni selleni, et vesinikuga täidetud õhupall omab negatiivset kaalu. Õige kaalu määramine oleks õhu üleslüket arvestades, kuid praktikas, kui on tegu tahkete ainete või vedelikega, on selle tähtsus suhteliselt väike. Kui küsite poest ühe kg leiba, siis soovite te tõepoolest leiva massi, mitte selle kaalu. Seega küsimine kilogrammides ja mitte njuutonites on füüsikaliselt õige. Kui müüja kaalub leiva vedrukaaluga, siis saab ta tulemuse njuutonites ja see sõltub laiuskraadist. Kui aga kasutatakse kangkaalu, siis võrreldakse omavahel kaalutavat keha kaalupommide massiga ja tulemus ei sõltu laiuskraadist.
- 5764.
Биофизика
-
- 5765.
Биофизика как биологическая наука
Биология Современный этап развития биофизики характеризуется тем, что на первый план выступает проблема формулировки исходных теоретических понятий, отражающих фундаментальные механизмы взаимодействия в биологических системах на молекулярном уровне. Вместе с тем специфика биологических систем представляется в своеобразии физических механизмов молекулярных процессов. Принципиальная особенность заключается в том, что характерные параметры элементарных взаимодействий могут изменяться в зависимости от условий их протекания в организме. Например, эффективность скоростей отдельных элементарных актов переноса электрона в реакционном центре фотосинтеза не только изменяются направленно в течение жизненного цикла развития, но и различна у сортов растений, отличающихся по физико-биохимическим показателям и продуктивности. Изучение глубоких биофизических механизмов в связи с физиолого-биохимическими особенностями объекта создают базу и для практического применения биофизических исследований, в частности в медицине.
- 5765.
Биофизика как биологическая наука
-
- 5766.
Биофизика слуха
Биология Среднее ухо (amis media) состоит из барабанной полости и слуховой трубы, сообщающей барабанную полость с носоглоткой. Барабанная полость (cavitas tympanica) заложена в основании пирамиды височной кости между наружным слуховым проходом и лабиринтом (внутренним ухом). Она содержит цепь из трех мелких косточек, передающих звуковые колебания от барабанной перепонки к лабиринту. Барабанная полость имеет очень небольшую величину (объем около 1 см3) и напоминает поставленный на ребро бубен, сильно наклоненный в сторону наружного слухового прохода. В барабанной полости различают шесть стенок: 1. Латеральная стенка барабанной полости (paries membranaceus) образована барабанной перепонкой и костной пластинкой наружного слухового прохода. Верхняя куполообразно расширенная часть барабанной полости (recessus membranae tympani superior) содержит две слуховые косточки; головку молоточка и наковальню. 2. Медиальная стенка барабанной полости прилежит к лабиринту, а потому называется лабиринтной (paries labyrinthicus). В ней имеются два окна: круглое, окно улитки - fenestra cochleae, ведущее в улитку и затянутое - membrana tympani secundaria, и овальное окно преддверия - fenestra vestibuli. В последнее отверстие вставлено основание третьей слуховой косточки - стремени. 3. Задняя стенка барабанной полости (paries mastoideus) несет возвышение для помещения наименьших скелетных мышц (m. stapedius ) в человеческом теле, чуть более одного миллиметра в длину, их цель заключается в стабилизации наименьшее кости в теле, стремени. 4. Передняя стенка барабанной полости носит название paries caroticus, так как к ней близко прилежит внутренняя сонная артерия. В верхней части этой стенки находится внутреннее отверстие слуховой трубы (ostium tympanicum tubae auditivae), которое у новорожденных и детей раннего возраста широко зияет, чем объясняется частое проникновение инфекции из носоглотки в полость среднего уха и далее в череп. 5. Верхняя стенка барабанной полости (paries tegmentalis) соответствует на передней поверхности пирамиды и отделяет барабанную полость от полости черепа. 6. Нижняя стенка, или дно, барабанной полости (paries jugularis) обращена к основанию черепа. Находящиеся в барабанной полости три маленькие слуховые косточки носят по своему виду названия молоточка, наковальни и стремени. 1. Молоточек (malleus) снабжен округлой головкой (caput mallei), которая при посредстве шейки (collum mallei) соединяется с рукояткой (manubrium mallei). 2. Наковальня (incus) имеет тело (corpus incudis) и два расходящихся отростка, из которых один более короткий (cms breve) направлен назад и упирается в ямку, а другой - длинный отросток (crus longum) идет параллельно рукоятке молоточка медиально и сзади от нее и на своем конце имеет небольшое овальное утолщение (processus lenticularis) сочленяющееся со стременем. 3. Стремя (stapes) по своей форме оправдывает свое название и состоит из маленькой головки (caput stapedis) несущей сочленовную поверхность для наковальни и двух ножек: передней, более прямой (crus anterius) и задней, более изогнутой (crus posterius), которые соединяются с овальной пластинкой (basis stapedis), вставленной в окно преддверия. В местах сочленений слуховых косточек между собой образуются два настоящих сустава с ограниченной подвижностью: articulatio incudomalledris и articulatio incudostapedia (наковальне - стременной сустав). Пластинка стремени соединяется с краями овального окна при посредстве соединительной ткани. Слуховые косточки укреплены, кроме того, еще несколькими отдельными связками. В целом все три слуховые косточки представляют более или менее подвижную цепь, идущую поперек барабанной полости от барабанной перепонки к лабиринту. Подвижность косточек постепенно уменьшается в направлении от молоточка к стремечку, что предохраняет спиральный орган, расположенный во внутреннем ухе, от чрезмерных сотрясений и резких звуков. Цепь косточек выполняет две функции: 1) костную проводимость звука и 2) механическую передачу звуковых колебаний к овальному окну преддверия (fenestra vestibuli). Последняя функция осуществляется благодаря связанным со слуховыми косточками и находящимся в барабанной полости двум маленьким мышцам, которые регулируют движения цепи косточек. Одна из них, m. tensor tympani (Тензора барабанная, большая из двух мышц барабанной полости, содержится в костной части слуховой трубы, ее роль заключается в ослаблении звуков); сухожилие ее прикрепляется к рукоятке молоточка вблизи шейки. Эта мышца, оттягивая рукоятку молоточка, напрягает барабанную перепонку. При этом вся система косточек смещается внутрь и стремечко вдавливается в окно преддверия. Другая мышца, m. stapedius, прикрепляется к задней ножке стремени у головки. По функции эта мышца является антагонистом предыдущей и производит обратное перемещение косточек в среднем ухе, в направлении от окна преддверия. Свою иннервацию мышца получает от лицевого нерва (n. facialis), который, проходя по соседству, дает маленькую веточку, n. stapedius.
- 5766.
Биофизика слуха
-
- 5767.
Биофизика цветового зрения
Медицина, физкультура, здравоохранение Цветовые тона образуют “естественный” континуум . Количественно он может быть изображен как цветовой круг, на котором задана последовательность вида: красный, желтый, зеленый, голубой, пурпурный и снова красный. Тон и насыщенность вместе определяют цветность, или уровень цвета. Насыщенность определяется тем, каково в цвете содержание белого или черного. Например, если чистый красный смешать с белым, то получится розовый оттенок. Любой цвет может быть представлен точкой в трехмерном “цветовом теле”. Один из первых примеров “цветового тела” - цветовая сфера немецкого художника Ф.Рунге (1810). Каждому цвету здесь соответствует определенный участок, расположенный на поверхности или внутри сферы. Такое представление может быть использовано для описания следующих наиболее важных качественных законов цветовосприятия.
- Воспринимаемые цвета образуют континуум; иными словами, близкие цвета переходят один в другой плавно, без скачка.
- Каждая точка в цветовом теле может быть точно определена тремя переменными.
- В структуре цветового тела имеются полюсные точки - такие дополнительные цвета, как черный и белый, зеленый и красный, голубой и желтый, расположены на противоположных сторонах сферы.
- 5767.
Биофизика цветового зрения
-
- 5768.
Биохимическая Эволюция
Биология Атмосфера была, по-видимому, “восстановительной”, о чем свидетельствует наличие в самых древних горных породах Земли металлов в восстановленной форме, таких как двухвалентное железо. Более молодые горные породы содержат металлы в окисленной форме, например трехвалентное железо. Отсутствие в атмосфере кислорода было, вероятно, необходимым условием для возникновения жизни; лабораторные опыты показывают, что, как это ни парадоксально, органические вещества (основа живых организмов) гораздо легче создаются в восстановительной среде, чем в атмосфере,, богатой кислородом. В 1923 г. А. И. Опарин высказал мнение, что атмосфера первичной Земли была не такой, как сейчас, а примерно соответствовала сделанному выше описанию. Исходя из теоретических соображений, он полагал, что органические вещества, возможно углеводороды, могли создаваться в океане из более простых соединений; энергию для этих реакций синтеза, вероятно, доставляла интенсивная солнечная радиация (главным образом ультрафиолетовая), падавшая на Землю до того, как образовался слой озона, который стал задерживать большую ее часть. По мнению Опарина, разнообразие
- 5768.
Биохимическая Эволюция
-
- 5769.
Биохимические аспекты коррекции питания борцов
Медицина, физкультура, здравоохранение В этой связи особый интерес представляет проблема рационализации питания при сверхинтенсивной мышечной деятельности, направленной на развитие скоростно-силовой выносливости, которая выполняется на грани физиологических возможностей организма и способствует развитию устойчивых структурно-метаболических нарушений. Подобные нагрузки свойственны процессу развития специальной выносливости в единоборствах. Эффективность соревновательной деятельности борцов в значительной мере определяется уровнем силовых возможностей спортсмена [2]. При этом в различных эпизодах поединка от спортсмена требуется проявление различных компонентов этого физического качества. В данном случае индивидуальный подход и жесткая регуляция нутриционного статуса, особенно его белкового компонента, является первостепенной задачей, решение которой требует физиологического обоснования композиционного состава и химической формулы моделируемых пищевых добавок функционального назначения.
- 5769.
Биохимические аспекты коррекции питания борцов
-
- 5770.
Биохимические и физико-химические процессы при производстве кисломолочных продуктов
Разное Сычужная коагуляция казеина включает 2 стадии - ферментативную и коагуляционную. Механизм как первой, так и второй стадии окончательно не установлен. Наиболее убедительной считается теория протеолитического действия сычужного фермента (гидролитическая теория). Согласно этой теории, на первой стадии под действием основного компонента сычужного фермента химозина происходит разрыв пептидной связи фенилаланин-метионин в полипептидных цепях -казеина ККФК, в результате чего молекулы -казеина расщепляются на гидрофобный пара--казеин и гидрофильный гликомакропротеид. Гидратная оболочка мицелл частично разрушается, силы электростатического отталкивания между частицами уменьшаются и дисперсная система теряет устойчивость. На второй стадии частично дестабилизированные мицеллы казеина (параказеина) собираются в агрегаты, которые затем соединяются продольными и поперечными связями в единую сетку, образуя сгусток.
- 5770.
Биохимические и физико-химические процессы при производстве кисломолочных продуктов
-
- 5771.
Биохимические изменения, происходящие в организме спортсмена
Туризм Бег на средние дистанции. Бег на средние дистанции (400, 800 и 1500 м) характеризуется работой субмаксимальной мощности и по своему воздействию на организм резко отличается от бега на короткие дистанции. Кислородный запрос и абсолютная величина кислородного долга в связи с большей величиной и длительностью работы (по сравнению с бегом на короткие дистанции) значительно увеличиваются (в 2-3 раза). Относительная же величина кислородного долга уменьшается и составляет от 90% (400 м) до 50 (1500 м) кислородного запроса. Бег на средние дистанции не является «анаэробной» работой; здесь развертываются и аэробные окислительные процессы. Однако анаэробные реакции еще имеют решающее значение, особенно при беге на 400 и 800 м, где за счет этих реакций энергетически работа обеспечивается более чем наполовину. При беге на средние дистанции основное значение имеет гликолиз. Именно поэтому повышение содержания молочной кислоты в крови при беге на средние дистанции достигает наибольших величин (от 150 до 250 мг%) и обусловливает наибольшие сдвиги реакции внутренней среды в кислую сторону. В соответствии с этим снижение щелочных резервов крови при беге на средние дистанции также наиболее велико. Так, при беге на 400 м они могут снижаться на 60%. Вследствие резкого повышения содержания в крови молочной кислоты большое количество ее появляется в моче и в поте.
- 5771.
Биохимические изменения, происходящие в организме спортсмена
-
- 5772.
Биохимические особенности витамина А
Медицина, физкультура, здравоохранение Гипервитаминоз возникает при применении больших количеств витамина А, витаминизированного рыбьего жира, печени кита, медведя, тюленя, некоторых рыб. При острой форме заболевания у взрослых отмечаются головная боль, головокружение, сонливость, тошнота, рвота, повышение температуры тела, расстройства зрения, судороги; при хронической форме заболевания - головная боль, раздражительность, бессонница, тошнота, запоры или поносы, боли в суставах при ходьбе. Более чувствительны к избытку витамина А дети; у них помимо вышеперечисленных признаков интоксикации наблюдаются отек головного мозга, выпячивание родничка, задержка роста, выпадение волос, кожные высыпания. Препараты витамина А нельзя принимать самостоятельно, а только по назначению врача. При приеме избыточных количеств каротина с морковью, овощами и фруктами может появиться желтовато-оранжевое окрашивание кожи, не сопровождающееся признаками интоксикации.[2,9] Взаимодействие витамина А с другими элементами
- Витамин E (токоферол) предохраняет витамин А от окисления как в кишечнике, так и в тканях. Следовательно, если имеется недостаток витамина Е, организм не может усвоить нужное количество витамина А, и поэтому эти два витамина нужно принимать вместе.
- Дефицит цинка может привести к нарушению превращения витамина А в активную форму. Поскольку организм в отсутствие достаточного количества цинка не может синтезировать белок, связывающий витамин А, молекулу-переносчика, которая транспортирует витамин А через стенку кишечника и освобождает его в крови, дефицит цинка может привести к плохому поступлению витамина А к тканям. Эти два компонента взаимозависимы: так, витамин А способствует усвоению цинка, а цинк так же действует в отношении витамина А.
- Минеральное масло может растворить жирорастворимые вещества (такие как витамин А и бета-каротин). Эти витамины затем проходят по кишечнику, не усваиваясь, поскольку они растворены в минеральном масле, из которого организм не может их извлечь. Постоянное применение минерального масла, таким образом, может привести к недостатку витамина А.[4].
- 5772.
Биохимические особенности витамина А
-
- 5773.
Биохимические особенности обмена веществ в организме при занятиях спортивной гимнастикой
Медицина, физкультура, здравоохранение Ресинтез АТФ при мышечной деятельности может осуществляться как в ходе реакции, идущих без кислорода, так и за счёт окислительных превращений в клетках, связанных с потреблением кислорода. В обычных условиях Ресинтез АТФ происходит в основном путём аэробных превращений, но при напряженной мышечной деятельности, когда доставка кислорода к мышцам затруднена, в тканях одновременно усиливаются и анаэробные процессы ресинтеза АТФ. В скелетных мышцах человека выявлено три вида анаэробных процессов, в ходе которых возможен Ресинтез АТФ:
- Креатин-фосфокиназная реакция (фосфогенный или алактатный анаэробный процесс), где Ресинтез АТФ происходит за счёт перефосфорилирования между креатинфосфатом и АДФ;
- Миокиназная реакция, при которой Ресинтез АТФ осуществляется за счёт дефосфорилирования определённой части АДФ;
- Гликолиз (лактацидный анаэробный процесс), где Ресинтез АТФ осуществляется по ходу ферментативного анаэробного расщепления углеводов, заканчивающего образованием молочной кислоты.
- 5773.
Биохимические особенности обмена веществ в организме при занятиях спортивной гимнастикой
-
- 5774.
Биохимические показатели крови человека при сальмонеллезной интоксикации
Медицина, физкультура, здравоохранение
- 5774.
Биохимические показатели крови человека при сальмонеллезной интоксикации
-
- 5775.
Биохимические реакторы
Биология Рассматривая многообразные реакторные устройства, применяемые в настоящее время в биохимических производствах, можно сделать вывод, что во всех реакторах происходят определенные физические процессы (гидродинамические, тепловые, массообменные), с помощью которых создаются оптимальные условия для проведения собственно биохимического превращения вещества (биохимической реакции). Для осуществления этих биохимических процессов биохимический реактор снабжается типовыми конструктивными элементами, широко применяемыми в аппаратах для проведения собственно биохимических процессов (мешалки, контактные устройства, теплообменники и т.д.). Поэтому все биохимические реакторы представляют собой комплексные аппараты, состоящие из известных конструктивных элементов, большинство которых используется для проведения технологических операций, не сопровождающихся биохимическим превращением перерабатываемых веществ. Количество таких конструктивных сочетаний, а значит, и типов реакторов может быть достаточно большим, что объясняется многообразием и сложностью протекающих биохимических реакций. Однако, для всех биохимических реаторов, существуют общие принципы, на основе которых можно найти связь между конструкцией аппарата и основными закономерностями протекающего в нем биохимического процесса.
- 5775.
Биохимические реакторы
-
- 5776.
Биохимический контроль в спорте
Биология
- 5776.
Биохимический контроль в спорте
-
- 5777.
Биохимический контроль в спорте
Медицина, физкультура, здравоохранение Молочная кислота. Гликолитический механизм ресинтеза АТФ в скелетных мышцах заканчивается образованием молочной кислоты, которая затем поступает в кровь. Выход ее в кровь после прекращения работы происходит постепенно, достигая максимума на 37-й минуте после окончания работы. Содержание молочной кислоты в крови в норме в состоянии относительного покоя составляет 11,5 ммоль л"1 (1530 мг%) и существенно возрастает при выполнении интенсивной физической работы . При этом накопление ее в крови совпадает с усиленным образованием в мышцах, которое существенно повышается после напряженной кратковременной нагрузки и может достичь около 30 ммоль кг1 массы при изнеможении. Количество молочной кислоты больше в венозной крови, чем в артериальной. С увеличением мощности нагрузки содержание ее в крови может возрастать у нетренированного человека до 5 6 ммоль л"1, у тренированного до 20 ммоль л~1 и выше. В аэробной зоне физических нагрузок лактат составляет 24 ммоль л~1, в смешанной 410 ммоль л~1, в анаэробной более 10 ммоль л~1. Условная граница анаэробного обмена соответствует 4 ммоль лактата в 1 л крови и обозначается как порог анаэробного обмена (ПАНО), или лактатный порог (ЛП). Снижение содержания лактата у одного и того же спортсмена при выполнении стандартной работы на разных этапах тренировочного процесса свидетельствует об улучшении тренированности, а повышение об ухудшении. Значительные концентрации молочной кислоты в крови после выполнения максимальной работы свидетельствуют о более высоком уровне тренированности при хорошем спортивном результате или о большей метаболической емкости гликолиза, большей устойчивости его ферментов к смещению рН в кислую сторону. Таким образом, изменение концентрации молочной кислоты в крови после выполнения определенной физической нагрузки связано с состоянием тренированности спортсмена. По изменению ее содержания в крови определяют анаэробные гликолитические возможности организма, что важно при отборе спортсменов, развитии их двигательных качеств, контроле тренировочных нагрузок и хода процессов восстановления организма.
- 5777.
Биохимический контроль в спорте
-
- 5778.
Биохимия и патофизиология в психиатрии
Медицина, физкультура, здравоохранение Работами многочисленных отечественных и зарубежных авторов установлено, что у психически больных имеются более или менее резко выраженные нарушения физиологических процессов и обмена веществ. В процессе лечения может наблюдаться нормализация отдельных видов обмена параллельно улучшению состояния больного либо углубление обменных нарушений как свидетельство неправильного лечения наряду с клиническими проявлениями неблагоприятного развития заболевания. Психические и соматические расстройства у психически больных являются двумя сторонами одного и того же болезненного процесса. Поэтому существовавшее ранее и поддерживаемое иногда и в наст, время представление о тех или иных соматических -нарушениях в клинической картине психического заболевания как о чем-то случайном, для него не характерном, находит свое выражение в нередко употребляемых определениях: «изменения обмена при маниакально-депрессивном психозе» или «нарушения со стороны вегетативной нервной системы при схизофрении». О принципиальной неправильности таких определений говорил еще В. А. Гиляровский, исходивший из представлений о единстве психических и соматических нарушений у психически больных. В аспекте такого единства речь должна идти не о каких-либо соматических изменениях при том или ином психическом заболевании, а о соматических симптомах психических болезней, составляющих один из компонентов такого рода болезни. Часть таких соматических симптомов выявляется патофизиологическими и биохимическими методами. Изучение и знание этих симптомов может способствовать более глубокому и правильному пониманию патогенеза заболеваний. Помимо этого, гуморальные исследования в практическом отношении могут способствовать решению следующих задач:
- 5778.
Биохимия и патофизиология в психиатрии
-
- 5779.
Биохимия и пороки развития поджелудочной железы
Медицина, физкультура, здравоохранение Инсулин образуется в (Б-клетках лангергансовых островков и находится в них в составе особых нерастворимых гранул цитоплазмы, причем его содержание пропорционально количеству этих гранул. Механизм выхождения инсулина из этих гранул и его секреции в кровь остается еще невыясненным. При перфузии изолированной поджелудочной железы крыс кровью, содержащей повышенное количество глюкозы, было установлено повышение секреции инсулина. Такой же эффект наблюдался при введении глюкозы в поджелудочную артерию собак. Имеет ли этот процесс значение для регуляции содержания глюкозы в крови у нормальных животных и человека, остается до сих пор, однако, неясным, т. к. колебания содержания глюкозы в крови в норме недостаточно велики, чтобы вызвать заметное изменение в секреции инсулина. Содержание инсулина в поджелудочной железе при расчете на 1 г ткани колеблется у различных видов млекопитающих в сравнительно небольших пределах, несмотря на то, что интенсивность процессов углеводного обмена у них может резко различаться. Наивысшее содержание инсулина отмечено в поджелудочной железе кроликов и обезьян (шимпанзе), у которых оно достигает 5,211,2 ЕД на 1 г ткани. Наименьшие количества инсулина найдены в П. ж. морской свинки, где оно равно лишь 0,08 0,23 ЕД на 1 г ткани. У здоровых людей содержание инсулина обычно колеблется в пределах 12 ЕД на 1 г ткани. Отмечены значительные изменения в содержании инсулина в поджелудочной железе различных животных в зависимости от возраста. Так, например, у новорожденных телят концентрация инсулина в поджелудочной железе при расчете на 1 г ткани составляет около 12 ЕД, у бычков в возрасте 2 лет эта величина снижается до 4,8 Е Д, а у взрослых животных в возрасте 9 лет и больше составляет только 1,8 ЕД. У людей концентрация инсулина в железе в возрасте до 5 лет, по-видимому, остается высокой, затем снижается до 12 лет, после чего концентрация его уже заметно не меняется. Общее же количество инсулина в поджелудочной железе при расчете на 1 кг веса тела повышается вплоть до 21 года. То обстоятельство, что в дальнейшем количество инсулина в поджелудочной железе отстает от увеличения веса, обусловливает недостаточность содержания инсулина в поджелудочной железе пожилых людей, в особенности у тучных, что, по-видимому, имеет определенное значение в механизме возникновения «диабета тучных». В литературе имеются также указания на то, что содержание инсулина в поджелудочной железе подвержено сезонным колебаниям и что оно выше у телят зимой; однако эти данные недостаточно достоверны, т. к. в соответствующих исследованиях не были учтены изменения в питании животных и другие факторы, могущие влиять на синтез и содержание инсулина в поджелудочной железе. Одним из наиболее важных факторов, определяющих содержание инсулина в поджелудочной железе, является характер питания и калорийность диеты. Уже сравнительно давно было установлено, что даже кратковременное голодание крыс вызывает значительное уменьшение содержания инсулина в их поджелудочной железе. Недостаточное по калорийности питание также ведет к заметному уменьшению содержания инсулина в поджелудочной железе крыс, но оказывает меньший эффект на количество инсулина в поджелудочной железе собак. При достаточной в отношении калорийности диете повышение содержания в ней жиров за счет углеводов также ведет к снижению содержания инсулина в поджелудочной железе крыс независимо от того, вызывает ли повышение количества жира в диете ожирение печени, или шт. При уменьшении содержания жира в диете и увеличении в ней содержания углеводов количество инсулина в поджелудочной железе крыс быстро возвращается к исходной величине, но увеличение содержания углеводов в обычной диете крыс не вызывает увеличения содержания инсулина в поджелудочной железе. Таким образом, определенное количество углеводов в диете необходимо для поддержания нормального уровня инсулина в железе, но увеличение их содержания сверх этого количества не может повести к повышению содержания инсулина свыше нормы. Что касается влияния белков диеты на содержание инсулина в поджелудочной железе, то имеются данные о том, что включение в диету крыс желатины вместо казеина обусловливает уменьшение содержания инсулина, по-видимому, вследствие недостаточности содержания в желатине триптофана и лизина. Не установлено какого-либо специфического влияния содержания витаминов и микроэлементов в диете, в том числе и цинка, на количество инсулина в поджелудочной железе. Удаление у животных надпочечников, гипофиза или половых желез само по себе не оказывает заметного влияния на содержание инсулина в поджелудочной железе, но введение животным значительных количеств препаратов передней доли гипофиза, содержащих лактотропный гормон и АКТГ, а также эстрогенов и тироксина ведет к заметному увеличению содержания инсулина, сопровождающемуся повышением числа активно функционирующих 3-клеток. Резкое уменьшение содержания инсулина в поджелудочной железе, наблюдается при воздействии на организм животных аллоксана и других диабетогенных факторов и при диабете у людей. При диабете средней тяжести у людей содержание инсулина в поджелудочной железе может снизиться до 0,4 ЕД на 1 г ткани, что соответствует 40 ЕД во всей железе, вместо 160200 ЕД в норме. Введение инсулина как здоровым животным, так и животным с экспериментальным диабетом в большинстве случаев вызывает значительное уменьшение содержания инсулина в поджелудочной железе, сопровождающееся уменьшением числа и активности А-клеток. Большое значение имеет то обстоятельство, что введение инсулина увеличивает степень снижения его содержания в поджелудочной железе, вызываемого голоданием или повышением количества жира в диете, но уменьшает степень снижения, вызываемого введением диабетогенных препаратов гипофиза или частичной панкреатомией. Это объясняется тем, что при голодании и повышении содержания жиров в диете потребность животных в инсулине значительно уменьшается, и это обусловливает регулярное уменьшение синтеза инсулина и его накопления в поджелудочной железе. Введение инсулина в этих случаях покрывает часть пониженной потребности животного и тем самым вызывает дальнейшее уменьшение синтеза инсулина. В тех же случаях, когда уменьшение содержания инсулина в поджелудочной железе вызывается диабетогенными факторами или частичной панкреатомией, оно является следствием истощения способности клеток синтезировать инсулин, наступающим после периода усиленной деятельности этих клеток. Введение инсулина в этих случаях, удовлетворяя часть потребности в нем организма, предотвращает истощение способности р-клеток синтезировать инсулин и способствует накоплению его в поджелудочной железе. В настоящее время еще нет достаточно убедительных данных о том, как влияет введение инсулина больным диабетом на его содержание в поджелудочной железе, но вполне вероятно, что в зависимости от тяжести заболевания и характера диеты и других факторов оно в одних случаях может снижать синтез и содержание инсулина в железе, в других случаях, наоборот, способствовать его увеличению.
- 5779.
Биохимия и пороки развития поджелудочной железы
-
- 5780.
Биохимия крови
Биология Качественный состав белков плазмы крови очень разнообразен. В клинической биохимии часто общий белок плазмы делят на отдельные фракции методом электрофореза, основанного на разделении белковых смесей по признаку различной величины массы и конкретного заряда одного белка. При электрофоретическом разделении в зависимости от носителя количество белковых фракций общего белка неодинаково. Независимо от вида электрофореза всегда выделяют основные фракции - альбумины и глобулины. Альбумины синтезируются в печени и являются простыми белками, содержащими до 600 аминокислотных остатков. Они хорошо растворимы в воде. Функция альбуминов состоит в поддержании коллоидно-осмотического давления плазмы, постоянства концентрации водородных ионов, а также в транспорте различных веществ, включая билирубин, жирные кислоты, минеральные соединения и лекарственные препараты. Альбумины плазмы крови могут рассматриваться и как определённый резерв аминокислот для синтеза жизненно необходимых специфических белков в условиях дефицита белков в рационе. Альбумины удерживают воду в кровяном русле, а поэтому при гипоальбуминемиях могут быть отёки мягких тканей. При нефритах в мочу из плазмы крови проникают в первую очередь альбумины, как самые низкомолекулярные белки (молекулярная масса альбуминов составляет около 60000 66000). В норме на долю альбуминов приходится 35 55% от общего количества белков плазмы крови.
- 5780.
Биохимия крови