Биология

  • 3401. Фенологическое картирование в изучении миграций птиц
    Информация пополнение в коллекции 12.01.2009

    Наличие выступов изофен на фенологических картах миграции оказалось всеобщей закономерностью. Они есть на всех картах, построенных нами и В.В. Cеребряковым для Украины (более 20 видов птиц), как для весенней миграции, так и для осенней, как для начала пролета, так и для его окончания. Хорошо видны петли и выступы изофен и на крупномасштабных картах других авторов (Хомченко, 1930, 1972; Beklova et al., 1983 и др.). На картах А.Ф. Миддендорфа, Д.Н. Кайгородова, У. Сливинской, Х. Саутерна, В. Кука изофены идут более или менее плавно. Но в этом случае мы, собственно говоря, уже имеем дело с рассмотрением явления на другом уровне - территория исследуемого региона у названных авторов очень большая: соответственно Российская Империя, ее Европейская часть, Европа, Северная Америка. Понятно, что при построении изофен отдельные выступы сглаживаются. Так, на карте прилета пеночки-веснички (Phylloscopus trochilus) в Европу (Southern, 1938b) вся Украина оказывается между двумя изофенами 1 и 2.04. Подобно этому поверхность листа кажется нам гладкой, но под микроскопом обнаруживаем его сложную структуру. При переходе к более детальным картам появляются выступы изофен. Именно так получилось при обработке фенологического материала за весну 1924 г., когда кроме общих карт были построены и более детальные для отдельных регионов СССР (Святский, 1924б). Для скворца (Sturnus vulgaris) нами была построена фенокарта прилета на юге Западной Украины (Грищенко, 1992). Она показала дробление единого миграционного потока, проходящего на северо-восток через Карпаты, на более мелкие, т. е. можно говорить о миграционных потоках второго порядка, существующих внутри более крупных.

  • 3402. Феномен человека
    Контрольная работа пополнение в коллекции 02.11.2010

    Характерное для нынешнего периода развития человечества растущее его влияние на окружающую среду приводит к существенным её изменениям. Изменяющиеся условия обитания человека, в свою очередь, влияют на него самого, ускоряя его эволюцию. Оба этих взаимосвязанных процесса породили уже немало проблем, существенно влияющих на перспективы развития Человечества. Главная проблема выражается в возникшем противоречии между быстро изменяющимися условиями существования и свойствами самого человека. Некоторыми специалистами утверждается, что человек, как представитель биологического вида подошел в своем развитии к заключительному этапу - вымиранию. Старый биологический вид погибает, но в его недрах зарождается и формируется новый. Отмечается, что в настоящее время наблюдаются признаки формирующегося нового человека, позволяющие быстро приспосабливаться к изменяющимся условиям среды. Это проявляется в таких явлениях как акселерация, всё чаще встречаются случаи сенситивных возможностей, повышается интеллект, наблюдаются случаи воздействия на собственный организм и организм других людей с целью лечения, придания ему более совершенных функций и т.д. Подобные проявления особенно выражены у лиц, практикующих различные методы самореализации, приемы йоги.

  • 3403. Ферментные препараты
    Информация пополнение в коллекции 12.01.2009

    Молодняк крупного рогатого скота, получающий глюкаваморин в дозе 0,1% от веса корма, дает ежесуточные привесы на 9-12% выше, чем в контроле. Расход кормов при этом снижается на 9-11%.Поросятам рекомендуется добавлять глюкаваморин в дозе 0,1-0,2% от веса корма - ежесуточный прирост живой массы при этом вырастает до 15%. Использование глюкаваморина ГЗх в рационах свиноматок в дозе 0,5% приводит к рождению поросят весом на 10-20% больше, чем у свиноматок, не получавших ферментный препарат.Цыплятам в возрасте от 1 до 60 дней рекомендуется добавлять глюкаваморин Г3х в количестве 0,5% от веса корма, что положительно влияет на сохранность поголовья и прирост живой массы. В рационы гусей на откорме и кур-несушек рекомендуется доза фермента 0,2-0,3%, что приводит к повышению привесов на 5-7% и повышению яйценоскости кур.Внесение в рацион ягнят глюкаваморина в дозе 0,3% от веса корма приводит к повышению среднесуточных привесов до 12%.
    Добавки ферментных препаратов наиболее эффективны в рационах молодняка.
    Добавление в рацион животных и птицы Глюкаваморина Г3х позволяет увеличить среднесуточные привесы при снижении расхода кормов /5/.

  • 3404. Ферменты
    Информация пополнение в коллекции 09.12.2008

    Ферменты (от лат. fermentum - брожение, закваска), специфические белки, присутствующие во всех живых клетках и играющие роль биологических катализаторов. Через их посредство реализуется генетическая информация и осуществляются все процессы обмена веществ и энергии в живых организмах. Ферменты бывают простыми или сложными белками, в состав которых наряду с белковым компонентом (апоферментом) входит небелковая часть - кофермент. Эффективность действия ферментов определяется значительным снижением энергии активации катализируемой реакции в результате образования промежуточных фермент-субстратных комплексов. Присоединение субстратов происходит в активных центрах, которые обладают сходством только с определенными субстратами, чем достигается высокая специфичность (избирательность) действия ферментов. Одна из особенностей ферментов - способность к направленному и регулируемому действию. За счёт этого контролируется согласованность всех звеньев обмена веществ. Эта способность определяется пространственность структурной молекулы ферментов. Она реализуется через изменение скорости действия ферментов и зависит от концентрации соответствующих субстратов и кофакторов, рH среды, температуры, а также от присутствия специфических активаторов и ингибиторов (например, адениловых нуклеотидов, карбонильных, сульфгидрильных соединений и др.). Некоторые ферменты помимо активных центров имеют дополнительные, т.н. аллостерические регуляторные центры. Биосинтез ферментов находится под контролем генов. Различают конститутивные ферменты, постоянно присутствующие в клетках, и индуцируемые ферменты, биосинтез которых активируется под влиянием соответствующих субстратов. Некоторые функционально взаимосвязанные ферменты образуют в клетке структурно организованные полиферментные комплексы. Многие ферменты и ферментные комплексы прочно связаны с мембранами клетки или её органоидов (митохондрий, лизосом, микросом и т.д.) и участвуют в активном транспорте веществ через мембраны.

  • 3405. Ферменты дереворазрушающих грибов
    Дипломная работа пополнение в коллекции 07.06.2011

    Целлюлолитические ферменты, осуществляющие биодеградацию целлюлозы, самого распространенного биополимера на Земле, занимают центральное место в круговороте органического углерода [2]. Основными микроорганизмами, продуцирующими целлюлазы, являются грибы возбудители мягкой и бурой гнили, а также различные виды аэробных и анаэробных бактерий. История исследования целлюлаз насчитывает уже более 50 лет, В течение этого периода важнейшим свойством, характеризующим целлюлазный комплекс, считалась его способность к глубокой деструкции целлюлозосодержащих субстратов (так называемая «сахаролитическая» активность). Поэтому исследования, в основном, были направлены на поиск ферментных препаратов и их продуцентов, эффективно осуществляющих гидролиз целлюлозы до глюкозы [19]. Целлюлазы этих препаратов, как правило, проявляли максимальную активность в кислой среде (рН 4-5) [14], но различались по субстратной специфичности, адсорбционной способности и термостабильности. Целлюлазы находят все более широкое применение в текстильной, целлюлозно-бумажной, пищевой и других отраслях промышленности [6]. В последнее время усилия исследователей направлены на поиск целлюлолитических ферментов, способных мягко воздействовать на поверхность целлюлозного субстрата, не приводя к глубокой деструкции целлюлозной матрицы [4]. Обнаружение ферментов с такой (тополитическая активность) активностью открыло новые возможности их применения. Например, для депигментации джинсовых изделий с целью придания им более привлекательных потребительских свойств (альтернатива традиционным химическим способам «варки», а также обработке пемзой); для биополировки текстильных материалов с целью удаления микродефектов и ворса; как компонента моющих средств и т, д. В связи с этим наиболее перспективными для использования являются так называемые «нейтральные» целлюлазы, демонстрирующие высокую активность [20].

  • 3406. Ферменты как причина патологических заболеваний
    Информация пополнение в коллекции 20.12.2011

    По принципу ведущих нарушений обмена веществ наследственные ферментопатии. разделяют на следующие типы: . ферментопатии обмена аминокислот (алкаптонурия, альбинизм, гипервалинемия, гистидинемия, гомоцистинурия, гиперлизинемия, лейциноз, тирозиноз, фенилкетонурия, цистатионинурия, цистиноз); . обмена углеводов (Галактоземия <http://dic.academic.ru/dic.nsf/enc_medicine/7442/%D0%93%D0%B0%D0%BB%D0%B0%D0%BA%D1%82%D0%BE%D0%B7%D0%B5%D0%BC%D0%B8%D1%8F>, гликогенозы, Лактат-ацидоз <http://dic.academic.ru/dic.nsf/enc_medicine/16042/%D0%9B%D0%B0%D0%BA%D1%82%D0%B0%D1%82-%D0%B0%D1%86%D0%B8%D0%B4%D0%BE%D0%B7>, непереносимость фруктозы); . обмена липвдов (Липидозы <http://dic.academic.ru/dic.nsf/enc_medicine/16699/%D0%9B%D0%B8%D0%BF%D0%B8%D0%B4%D0%BE%D0%B7%D1%8B>) - плазматические (наследственная гиперлипидемия, гиперхолестеринемия, недостаточность лецитин-холестеринацилтрансферазы) и клеточные (ганглиозидозы, муколипидозы, сфингомиелинозы, цереброзидозы); обмена пуринов и пиримидинов (Подагра <http://dic.academic.ru/dic.nsf/enc_medicine/23894/%D0%9F%D0%BE%D0%B4%D0%B0%D0%B3%D1%80%D0%B0>, синдром Леша - Найхана, оротовая ацидурия); . биосинтеза кортикостероидов (адреногенитальный синдром, гипоальдостеронизм); . порфиринового (Порфирии <http://dic.academic.ru/dic.nsf/enc_medicine/24426/%D0%9F%D0%BE%D1%80%D1%84%D0%B8%D1%80%D0%B8%D0%B8>) и билирубинового) обмена (см. Гепатозы <http://dic.academic.ru/dic.nsf/enc_medicine/8108/%D0%93%D0%B5%D0%BF%D0%B0%D1%82%D0%BE%D0%B7%D1%8B>); . соединительной ткани (Марфана синдром <http://dic.academic.ru/dic.nsf/enc_medicine/17843/%D0%9C%D0%B0%D1%80%D1%84%D0%B0%D0%BD%D0%B0>,-Элерса Данлоса синдром <http://dic.academic.ru/dic.nsf/enc_medicine/35571/%D0%AD%D0%BB%D0%B5%D1%80%D1%81%D0%B0>)', . обмена металлов - Гепатоцеребральная дистрофия <http://dic.academic.ru/dic.nsf/enc_medicine/8171/%D0%93%D0%B5%D0%BF%D0%B0%D1%82%D0%BE%D1%86%D0%B5%D1%80%D0%B5%D0%B1%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F> и болезнь Менкеса (обмен меди), Гемохроматоз <http://dic.academic.ru/dic.nsf/enc_medicine/8007/%D0%93%D0%B5%D0%BC%D0%BE%D1%85%D1%80%D0%BE%D0%BC%D0%B0%D1%82%D0%BE%D0%B7> (обмен железа), семейный периодический паралич (обмен калия); . ферментопатии эритрона - гемолитические Анемии <http://dic.academic.ru/dic.nsf/enc_medicine/2535/%D0%90%D0%BD%D0%B5%D0%BC%D0%B8%D0%B8>, недостаточность глюкозо-6-фосфатдегидрогеназы и глютатионредуктазы в эритроцитах, анемия Фанкони (недостаточность супероксиддисмутазы); . ферментопатии лимфоцитов и лейкоцитов - иммунодефицитные состояния при недостаточности аденозин-деаминазы, пурин-нуклеотид-фосфорилазы, септический гранулематоз; . ферментопатии транспортных систем почек (Тубулопатии <http://dic.academic.ru/dic.nsf/enc_medicine/31837/%D0%A2%D1%83%D0%B1%D1%83%D0%BB%D0%BE%D0%BF%D0%B0%D1%82%D0%B8%D0%B8>) - почечный канальцевый ацидоз, болезнь де Тони - Дебре - Фанкони, фосфат-диабет, . ферментопатии желудочно-кишечного тракта - Мальабсорбции синдром <http://dic.academic.ru/dic.nsf/enc_medicine/17722/%D0%9C%D0%B0%D0%BB%D1%8C%D0%B0%D0%B1%D1%81%D0%BE%D1%80%D0%B1%D1%86%D0%B8%D0%B8>при недостаточности дисахаридаз, патология кишечного транспорта глюкозы и галактозы, врожденная хлоридная диарея.

  • 3407. Ферменты микроорганизмов
    Информация пополнение в коллекции 09.12.2008

    Фруктоза, или иначе фруктовый, плодовый или медовый сахар, широко распространена в природе. Особенно богаты ей
    яблоки и помидоры, а также пчелиный мед, который почти наполовину состоит из фруктозы. По сравнению с обычным пищевым сахаром (в состав которого фруктоза также входит, но в виде химического соединения с менее сладкой глюкозой) фруктоза обладает более приятным вкусом, и согласно профессиональной терминологии вкус фруктозы «медовый», а обычного
    сахара «приторный». Она на 6070% слаще сахара и потреблять ее можно меньше, а значит, меньше будет и калорийность продукта. Это важно с точки зрения диетологии питания. Фруктозу в отличие от глюкозы и пищевого сахара могут потреблять больные диабетом, так как замена сахара фруктозой существенно снижает вероятность возникновения диабета. Это объясняется тем, что усвоение фруктозы не связано с превращением
    инсулина. Кроме того, она в меньшей степени вызывает заболевание зубов , чем сахар.В смеси с глюкозой фруктоза не кристаллизуется (не засахаривается), поэтому нашла широкое применение в производстве мороженого, кондитерских изделий и т. д. Несмотря на неоспоримые преимущества фруктозы по сравнению с обычным сахаром, вплоть до начала 70-х годов она не производилась промышленным путем. В 1973 г. американской компанией «Клинтон Корн» был внедрен в промышленность процесс превращения глюкозы во фруктозу под действием иммобилизованного фермента глюкозоизомеразы, этот процесс стал самым крупным в мире по сравнению с другими, в которых используются иммобилизованные ферменты.

  • 3408. Фиалки
    Статья пополнение в коллекции 12.01.2009

    Фиалки известны с тех самых пор, как их обнаружил германский правитель Восточной Африки барон Вальтер фон Сен-Поль. Именно от этого имени и происходит второе название фиалок Сенполии. Цветы настолько поразили его, что он описал эту встречу в самых восторженных выражениях. Он сравнил их с сиянием бледно-голубого света в чаше, в центре которой горел ярко-желтый огонек. Первое же название Узамбарская фиалка происходит от названия гор, в которых фиалки были впервые обнаружены. Цветок был похож на обычную, известную всем дикорастущую, душистую фиалку, но превосходил его по красоте и разнообразию оттенков.

  • 3409. Физико-химическая модель процессов в анодном микроразряде
    Статья пополнение в коллекции 12.01.2009

    "Залечивание" поры - дальнейшее расширение плазменного образования достаточно быстро приводит к значительному снижению температуры последнего и, как следствие, к уменьшению концентрации носителей разряда, обрыву тока и стремительному охлаждению канала. Исчезновение газо-плазменного пузырька будет происходить после погашения газового разряда в нем. Погашение газового разряда, как известно, произойдет при снижении плотности тока в нем ниже минимально допустимой для самоподдержания разряда. В случае микроразрядов причинами уменьшения плотности тока газового разряда могут являться: 1) обеднение со временем припузырькового слоя электролита переносчиками тока, из-за чего электролит становится неспособным обеспечивать минимально допустимую для самоподдержания разряда плотность тока, и газовый разряд гаснет; 2) увеличение размеров пузырька микроразряда из-за испарения в него окружающей его жидкости; 3) заплавление или "залечивание" (путем анодирования в газовой плазме) канала пробоя в барьерной части оксидной пленки. Образовавшийся при первом пробое кратер обычно достигает поверхности металла. В этом месте плотность тока становится максимальной благодаря относительно малому сопротивлению электролита в кратере, что обеспечивает быстрое появление оксидной пленки (продукта плазмо-химической реакции МеxОy). Происходит "залечивание" места пробоя, нарастает толщина оксидной пленки, причем преимущественно в глубь материала подложки.

  • 3410. Физиологическая адаптация нового RuMP штамма факультативных метилотрофных бактерий Brevibacterium me...
    Статья пополнение в коллекции 24.10.2006

    Во всех экспериментах не зависимо от присутствия 2Н2О в ростовой среде было зафиксировано увеличение продукции фенилаланина на ранней фазе экспоненциального роста, когда выход микробной биомассы был незначителен, в то время как на фазе позднего экспоненциального роста наблюдалось снижение уровня его накопления в ростовой среде (рис. 3). Для того чтобы объяснить эффект снижения уровня накопления фенилаланина были высказаны возможные предположения о морфологической неоднородности микробной популяции, ингибировании биосинтеза фенилаланина конечным продуктом нарушении транспорта фенилаланина через клеточную мембрану. Результаты по микроскопическому исследованию растущей популяции микроорганизмов показали, что данный характер динамики накопления фенилаланина не коррелировал с качественными изменениями клеточной морфологии на поздних стадиях роста, что служило подтверждением морфологической однородности микробной популяции. Скорее всего, накопленный экзогенно в процессе роста фенилаланин ингибировал ферменты собственного пути биосинтеза. Кроме того, не исключена возможность, что при выращивании без рН-статирования может происходить как обратное превращение секретируемого фенилаланина в интермедиаторные соединения его биосинтеза по пути шикимовой кислоты, так и спонтанная ассимиляция фенилаланина клеткой для обеспечения своих собственных метаболических потребностей, что отмечено в других работах [15, 16]. Эффект уменьшения уровня накопления фенилаланина наблюдался при росте как на протонированной, так и на среде с 98 об.% 2Н2О, что затрудняло его исследование (рис. 3). Из-за того, что на среде с 98 об.% 2Н2О ухучшались все ростовые параметры, было сделано предположение, что уменьшение уровня накопления фенилаланина в ростовой среде относится не к изменению транспорта фенилаланина через клеточную мембрану, а к негативному биостатическому эффекту 2Н2О. Данные по исследованию культуральной жидкости методом ТСХ показали, что кроме фенилаланина данный штамм синтезирует и накапливает в ростовой среде незначительные количества (на уровне 5-6 ммоль) метаболически связанных с ним аминокислот (аланин, валин, лейцин/изолейцин), присутствие которых также подтверждалось анализом смеси метиловых эфиров N-DNS-производных аминокислот методом масс-спектрометрии EI MS.

  • 3411. Физиологически активные липиды и их роль в питании человека
    Информация пополнение в коллекции 10.01.2010

    Выполняя столь значимые функции в организме человека, жиры являются важной составляющей пищевого рациона. Для поддержания оптимального здоровья необходимо придерживаться общих правил рационального питания и потребления жиров, в частности. Средняя физиологическая потребность в жирах для здорового человека составляет около 30 % общей калорийности пищи, третью часть потребляемых жиров должны составлять растительные масла. В некоторых специальных диетах долю растительных жиров увеличивают до 50 % и более. Жиры улучшают вкус пищи и вызывают чувство сытости. В процессе обмена веществ они могут образовываться из углеводов и белков, но в полной мере ими не заменяются. Пищевая ценность жиров определяется их жирнокислотным составом, наличием незаменимых факторов питания, степенью усвояемости и удобоваримости. Биологическая активность пищевых жиров определяется содержанием в них незаменимых полиненасыщенных жирных кислот. Поскольку основным источником ПНЖК являются растительные масла, то они и обладают наибольшей биологической активностью. Высока и усвояемость растительных масел.[6]

  • 3412. Физиологические процессы в организме человека
    Контрольная работа пополнение в коллекции 15.02.2012
  • 3413. Физиологические эффекты гормонов, плохо проникающих в клетку
    Методическое пособие пополнение в коллекции 21.01.2010

    - ИФ3, переходя в цитоплазму, действует на рецепторы гладкой ЭПС, что приводит к открыванию Са2+-каналов и выходу Са2+ в цитозоль. Са2+ при этом выступает в качестве третьего посредника, который связывается с белком кальмодулином и активирует Са2+-кальмодулинзависимую протеинкиназу, фосфорилирующую эффекторные белки, влияющие на функции клеток, их пролиферацию и дифференцировку (регулирует активность аденилатциклазы и синтез цАМФ, фосфолипазыА2 и синтез простагландинов, тромбоксана, простациклина, гуанилатциклазы и синтез цГМФ, фосфодиэстеразы и разрушение цАМФ и цГМФ; участвует в регуляции секреции инсулина, гормонов щитовидной железы, гипофиза и надпочечников, кишечной секреции и секреции нейромедиаторов). (Роль Са2+ как посредника действия гормонов обусловлена его сильным влиянием при низких концентрациях 10-810-6 М на метаболизм и функции клетки. Гормоны могут увеличивать концентрацию Са2+ в цитозоле как в результате открывания Са2+-каналов клеточной мембраны, так выхода Са2+ из гладкой ЭПС. В клетке есть специальные белки, связывающие Са2+ при низкой концентрациикальмодулин, гуанилатциклаза, тропонин С и др. Присоединение Са2+ к этим белкам изменяет их конфигурацию и свойства. Это приводит к изменению многочисленных функций клетокметаболической, секреторной, сократительной, биоэлектрической и др.)

  • 3414. Физиологическое значение меди в жизнедеятельности растений
    Реферат пополнение в коллекции 04.09.2010
  • 3415. Физиологическое значение спинномозговой жидкости
    Контрольная работа пополнение в коллекции 12.07.2011

    При поражениях центральной нервной системы давление и состав (в частности, соотношение содержания белка и клеток) спинномозговая жидкость изменяются. Давление спинномозговой жидкости повышается при нарушении её оттока (травмы черепа и позвоночника, опухоли мозга, кровоизлияния и т.д.). При менингите обнаруживаются бактерии. Коллоидные реакции помогают, например, в диагностике сифилиса; биохимические исследования спинномозговой жидкости (определение сахара, хлоридов, свободных аминокислот, ферментов и др.) - при распознавании нейроинфекций, эпилепсии и др.

  • 3416. Физиологическое состояние древостоя под влиянием неблагоприятных факторов внешней среды
    Отчет по практике пополнение в коллекции 15.02.2011

    Сосна обыкновенная (P. sylvestris) широко распространена в европейской части России, Сибири, доходит до Охотского моря. Часто формирует леса на песчаных и супесчаных почвах. Растет также на сфагновых болотах, а на юге по известковым и меловым склонам. Древесина широко используется как строительный и поделочный материал. Из стволов добывают живицу, из которой при перегонке получают корабельную смолу, канифоль, скипидар. В хвое содержится много аскорбиновой кислоты. Молодые побеги используют для изготовления различных видов лекарств и в парфюмерии, пыльцу применяют в медицине в качестве заменителя спор плауна. Сосна сибирская или сибирская кедровая сосна - крупноствольное дерево, широко распространенное по всей Сибири и в Монголии. Хвоя располагается по укороченным побегам пучками по 5 шт. Женские шишки прямостоячие, семена созревают осенью, на второй год после опыления. При созревании семян, шишки не раскрываются. Семена без крыла. Спермодерма твердая. В быту семена называют кедровыми орехами, их используют в пищу, для получения масла и в производстве кондитерских изделий. Она дает ценную древесину, которая широко используется в отраслях народного хозяйства, из смолы получают скипидар.

  • 3417. Физиология высшей нервной деятельности
    Методическое пособие пополнение в коллекции 09.12.2008

    в «актуальные». Иначе говоря, неработающие синапсы в процессе неоднократных сочетаний условного и безусловного сигналов становятся работающими, то есть способными к проведению возбуждения. Процесс актуализации синапсов осуществляется несколькими путями. Во-первых, происходит переориентация нервных отростков, в результате чего между нервными центрами образуется как бы дорожка, состоящая из системы упорядоченных нейронов и синапсов. Но наличие такой дорожки не является гарантией проведения нервного импульса, поскольку расстояние между пресинаптической и постсинаптической мембранами может быть слишком большим. В результате этого медиатор, выделяемый пресинаптической мембраной, проходя через слишком широкую синаптическую щель, теряется пространстве. Устранение этого недостатка происходит за счет утолщения (набухания) пре- и постсинаптических мембран. Набухание мембран, уменьшая ширину синаптической щели, приводит к тому, что медиатор достигает постсинаптической мембраны и вызывает ее деполяризацию и возникновение потенциала действия, то есть синапс начинает проводить возбуждение. Еще один из путей актуализации синапсов связан с образованием миелиновой оболочки в случае, если часть нервных волокон в системе нейронов, образовавших «дорожку» между двумя центрами, являются безмякотными. Как известно, возбуждение по безмякотным волокнам проводится медленно и с потерей энергии нервного сигнала (декрементный тип проведения возбуждения). В силу этого к пресинаптической щели подходит небольшой по амплитуде потенциал действия, который стимулирует выделение синаптическую щель небольшого количества медиатора, неспособного возбудить постсинаптическую мембрану. В результате возбуждение через синапс не передается. При выработке условного рефлекса происходит образование миелиновых оболочек вокруг безмякотных нервных волокон помощью клеток опорной ткани (глии). Сформированное мякотное волокно характеризуется быстрым и бездекрементным проведением возбуждения. Теперь потенциал действия, не теряя своей амплитуды, подходит к пресинаптической мембране, через которую выделяется количество медиатора, достаточное для возбуждения постсинаптической мембраны. Таким образом, сигнал передается с одного нейрона на другой. Следовательно, в основе формирования кратковременной памяти лежат физиологические процессы актуализации синапсов на стадии образования условных рефлексов.

  • 3418. Физиология двигательных функций на уровне ствола мозга
    Информация пополнение в коллекции 03.11.2010

    При этом ретикулоспинальные пути, облегчающие активность спинного мозга, берут свое начало от каждого уровня ствола мозга. Пути, тормозящие моторную активность, начинаются преимущественно в бульбарном отделе, и их влияние билатерально. Показано, что ретикулоспинальные пути, начинающиеся от области варолиева моста, тормозят альфа и гамма мотонейроны сгибателей и активируют мотонейроны разгибателей, в то время как волокна от бульбарного отдела оказывают обратное действие. Электрическая стимуляция обширных областей ретикулярной формации ствола мозга приводит к ритмическим движениям, тремору, нередко сопровождающимся тоническими сокращениями, которые оказываются весьма длительными [3; 69 70]. В функциональном и топографическом плане латеральный ретикулоспинальный путь сходен с руброспинальным и кортикоспинальным путями; они образуют нисходящую латеральную флексорную (сгибательную) систему. От ретикулярных ядер моста идет неперекрещенный медиальный ретикулоспинальный путь, оканчивающийся на интернейронах спинного мозга. Через них осуществляется стимуляция альфа и гамма нейронов мышц-разгибателей осевой мускулатуры тела (туловища и проксимальных отделов конечностей) и через тормозные интернейроны тормозятся сгибатели. В функциональном и топографическом отношении этот путь сходен с вестибулоспинальными путями, они составляют медиальную нисходящую экстензорную (разгибательную) систему [4; 165 166].

  • 3419. Физиология дыхания
    Информация пополнение в коллекции 30.10.2011

    Дыхательные пути, которые по своим свойствам являются слегка растяжимыми, сжимаемыми и создают поток воздуха. Дыхательная система состоит из тканей и органов, обеспечивающих легочную вентиляцию и легочное дыхание (воздухоносные пути, легкие и элементы костно-мышечной системы). К воздухоносным путям, управляющим потоком воздуха, относятся: нос, полость носа, носоглотка, гортань, трахея, бронхи и бронхиолы. Легкие состоят из бронхиол и альвеолярных мешочков, а также из артерий, капилляров и вен легочного круга кровообращения. К элементам костно-мышечной системы, связанным с дыханием, относятся ребра, межреберные мышцы, диафрагма и вспомогательные дыхательные мышцы. Нос и полость носа служат проводящими каналами для воздуха, где он нагревается, увлажняется и фильтруется. Полость носа выстлана богато васкулиризированной слизистой оболочкой. В верхней части полости носа лежат обонятельные рецепторы. Носовые ходы открываются в носоглотку. Гортань лежит между трахеей и корнем языка. У нижнего конца гортани начинается трахея и спускается в грудную полость, где делится на правый и левый бронхи. Установлено, что дыхательные пути от трахеи до концевых дыхательных единиц (альвеол) ветвятся (раздваиваются) 23 раза. Первые 16 "поколений" дыхательных путей - бронхи и бронхиолы выполняют проводящую функцию. "Поколения" 17-22 - респираторные бронхиолы и альвеолярные ходы, составляют переходную (транзиторную) зону, и только 23-е "поколение" является дыхательной респираторной зоной и целиком состоит из альвеолярных мешочков с альвеолами. Общая площадь поперечного сечения дыхательных путей по мере ветвления возрастает более чем в 4,5 тысячи раз. Правый бронх обычно короче и шире левого.

  • 3420. Физиология зрительного и слухового анализатора
    Контрольная работа пополнение в коллекции 25.10.2010

    Среднее ухо (звукопроводящий отдел) представлено барабанной полостью, где расположены три слуховые косточки: молоточек, наковальня и стремечко. От наружного слухового прохода среднее ухо отделено барабанной перепонкой. Рукоятка молоточка вплетена в барабанную перепонку, другой его конец сочленен с наковальней, которая, в свою очередь, сочленена со стремечком. Стремечко прилегает к мембране овального окна. Площадь барабанной перепонки (70 мм2) значительно больше площади овального окна (3,2 мм2), благодаря чему происходит усиление давления звуковых волн на мембрану овального окна примерно в 25 раз. Так как рычажный механизм косточек уменьшает амплитуду звуковых волн примерно в 2 раза, то, следовательно, происходит такое же усиление звуковых волн на овальном окне. Таким образом, происходит общее усиление звука средним ухом примерно в 60 - 70 раз. Если же учитывать усиливающий эффект наружного уха, то эта величина достигает 180 - 200 раз. Среднее ухо имеет специальный защитный механизм, представленный двумя мышцами: мышцей, натягивающей барабанную перепонку, и мышцей, фиксирующей стремечко. Степень сокращения этих мышц зависит от силы звуковых колебаний. При сильных звуковых колебаниях мышцы ограничивают амплитуду колебаний барабанной перепонки и движение стремечка, предохраняя тем самым рецепторный аппарат во внутреннем ухе от чрезмерного возбуждения и разрушения. При мгновенных сильных раздражениях (удар в колокол) этот защитный механизм не успевает срабатывать. Сокращение обеих мышц барабанной полости осуществляется по механизму безусловного рефлекса, который замыкается на уровне стволовых отделов мозга. В барабанной полости поддерживается давление, равное атмосферному, что очень важно для адекватного восприятия звуков. Эту функцию выполняет евстахиева труба, которая соединяет полость среднего уха с глоткой. При глотании труба открывается, вентилируя полость среднего уха и уравнивая давление в нем с атмосферным. Если внешнее давление быстро меняется (быстрый подъем на высоту), а глотания не происходит, то разность давлений между атмосферным воздухом и воздухом в барабанной полости приводит к натяжению барабанной перепонки и возникновению неприятных ощущений, снижению восприятия звуков.