Безопасность жизнедеятельности

  • 1841. Работоспособность человека
    Информация пополнение в коллекции 02.03.2010

    Терморегуляция совокупность физиологических и химических процессов в организме человека, направленных на поддержание постоянства температуры тела ( 3637 °С). Это обеспечивает нормальное функционирование организма, способствует протеканию биохимических процессов в организме человека. Терморегуляция (Q) исключает переохлаждение или перегрев организма человека. Поддержание постоянства температуры тела определяется теплопродукцией организма (М), т.е. процессами обмена веществ в клетках и мышечной дрожью, теплоотдачей или теплоприходом (R) за счет инфракрасного излучения, которое излучает или получает поверхность тела; теплоотдачей или теплоприходом за счет конвекции (С), т.е. через нагрев или охлаждение тела воздухом, омываемым поверхность тела; теплоотдачей (Е), обусловленной испарением влаги с поверхности кожи, слизистых оболочек верхних дыхательных путей, легких. Терморегуляция, таким образом, обеспечивает равновесие между количеством тепла, непрерывно образующимся в организме и излишком тепла, непрерывно отдаваемым в окружающую среду, т.е. сохраняет тепловой баланс организма.

  • 1842. Работы "Римского клуба"
    Информация пополнение в коллекции 12.01.2009

    Второй доклад Римскому клубу получил не менее противоречивую оценку в зарубежной литературе, чем первый. Одни теоретики рассматривали его как надежду и общий план действия для глобального выживания [4], другие же находили его даже более пессимистическим, чем первый, считая, что техническая компетенция авторов математических расчетов неадекватна их самоуверенному вторжению в сложные сферы социальных наук и человеческих мотивов [5]. Вместе с тем, несмотря на продолжающиеся дебаты в научном мире вокруг этого доклада, открывшего второй этап в эволюции Римского клуба, идеи и методы построения модели мировой системы, выдвинутые М. Месаровичем и Э. Пестелем, не только получили отражение в теоретических исследованиях, но и использовались в практической деятельности некоторых государств.

  • 1843. Рабочая зона оператора
    Контрольная работа пополнение в коллекции 17.09.2010

    При выборе типа и формы шкалы необходимо учитывать, что:

    1. При малом времени считывания показаний (менее 0,5 сек) рекомендуется применять подвижные шкалы с неподвижным указателем, при этом отсутствуют поисковые движения глаз и условия считывания приближаются к условиям считывания счетчика; при увеличении времени считывания меньшими ошибками считывания обладают неподвижные шкалы с двигающейся стрелкой,
    2. Применение шкал типа «открытое окно» рекомендуется для определения точных количественных данных; при этом обеспечивается самая высокая точность считывания (0,5% при времени считывания 0,12 сек); для других форм шкал точность считывания значительно меньше (круглая 10%, линейно-горизонтальная 27%, линейно-вертикальная 35%),
    3. Точность и скорость считывания зависит не только от формы шкалы, но и её размера; установлено, что при увеличении диаметра шкалы точность вначале возрастает, а затем падает; оптимальный диаметр круглой шкалы составляет 40 60 мм; точность считывания с горизонтальных шкал до 150 мм примерно равна точности считывания с круглых шкал, а с увеличением до 250 мм резко падает,
    4. Выбор типа и формы шкалы предопределяется также её назначением; для установки заданной величины параметра рекомендуют применять неподвижные горизонтальные шкалы либо подвижные круглые или полукруглые; для контрольного чтения лучшим является цифровой счетчик или шкала типа «открытое окно»; для качественного чтения применяют круглые шкалы с подвижным указателем (больше меньше); для поверочного чтения (в допуске не в допуске) рекомендуют круглые шкалы с движущейся стрелкой и цветовым сектором поля допуска.
  • 1844. Рабочее время. Опасные производственные факторы
    Контрольная работа пополнение в коллекции 24.12.2011

    Неполное рабочее время - допущенное законодательством уменьшение продолжительности установленной нормы рабочего времени. Продолжительность неполного рабочего времени законом не определена. Неполное рабочее время устанавливается по соглашению между работником и нанимателем как при приеме на работу, так и впоследствии. Неполное рабочее время может устанавливаться как неполный рабочий день или неполная рабочая неделя либо в их сочетании. При неполном рабочем дне уменьшается норма продолжительности ежедневной работы, установленная правилами внутреннего трудового распорядка или графиком работы. Неполный рабочий день следует отличать от сокращенного рабочего дня. При неполной рабочей неделе сокращается число рабочих дней в неделю. Неполное рабочее время может состоять в одновременном уменьшении норм продолжительности ежедневной работы и числа рабочих дней в неделю. Для отдельных работников наниматель обязан устанавливать неполное рабочее время: по просьбе беременной женщины, женщины, имеющей ребенка в возрасте до 14 лет или осуществляющей уход за больным членом семьи в соответствии с медицинским заключением; инвалидам в соответствии с медицинскими рекомендациями; при приеме на работу по совместительству, другим категориям работников, предусмотренным коллективным договором, соглашением. Неполное рабочее время устанавливается лишь по просьбе работника или с его согласия.

  • 1845. Рабочее место инженера-программиста
    Информация пополнение в коллекции 12.01.2009

    На рабочем месте программиста источниками шума, как правило, являются технические средства, как то - компьютер, принтер, вентиляционное оборудование, а также внешний шум. Они издают довольно незначительный шум, поэтому в помещении достаточно использовать звукопоглощение. Уменьшение шума, проникающего в помещение извне, достигается уплотнением по периметру притворов окон и дверей. Под звукопоглощением понимают свойство акустически обработанных поверхностей уменьшать интенсивность отраженных ими волн за счет преобразования звуковой энергии в тепловую. Звукопоглощение является достаточно эффективным мероприятием по уменьшению шума. Наиболее выраженными звукопоглощающими свойствами обладают волокнисто-пористые материалы: фибролитовые плиты, стекловолокно, минеральная вата, полиуретановый поропласт, пористый поливинилхлорид и др. К звукопоглощающим материалам относятся лишь те, коэффициент звукопоглощения которых не ниже 0.2.

  • 1846. Рабочее место на предприятии: планировка, оснащение и аттестация
    Информация пополнение в коллекции 20.02.2012

    Оценка фактического состояния условий труда по степени вредности и опасности производится в соответствии с руководством "Р 2.2.755-99. Гигиенические критерии оценки и классификации условий труда по показателям вредности и опасности факторов производственной среды, тяжести и напряжённости трудового процесса" на основе сопоставления результатов измерений всех опасных и вредных факторов производственной среды, тяжести и напряжённости трудового процесса с установленными для них гигиеническими нормами. По результатам таких сопоставлений определяется класс условий труда, как для каждого фактора, так и для рабочего места в целом.

  • 1847. Рабочее место программиста (раздел диплома по БЖД)
    Дипломная работа пополнение в коллекции 12.01.2009

    В данном разделе дипломной работы были изложены требования к рабочему месту инженера - программиста. Созданные условия должны обеспечивать комфортную работу. На основании изученной литературы по данной проблеме, были указаны оптимальные размеры рабочего стола и кресла, рабочей поверхности, а также проведен выбор системы и расчет оптимального освещения производственного помещения, а также расчет уровня шума на рабочем месте. Соблюдение условий, определяющих оптимальную организацию рабочего места инженера - программиста, позволит сохранить хорошую работоспособность в течение всего рабочего дня, повысит как в количественном, так и в качественном отношениях производительность труда программиста, что в свою очередь будет способствовать быстрейшей разработке и отладке программного продукта.Библиографический список

    1. Дубовцев В.А. Безопасность жизнедеятельности. / Учеб. пособие для дипломников. - Киров: изд. КирПИ, 1992.
    2. Мотузко Ф.Я. Охрана труда. М.: Высшая школа, 1989. 336с.
    3. Безопасность жизнедеятельности. /Под ред. Н.А. Белова - М.: Знание, 2000 - 364с.
    4. Самгин Э.Б. Освещение рабочих мест. М.: МИРЭА, 1989. 186с.
    5. Справочная книга для проектирования электрического освещения. / Под ред. Г.Б. Кнорринга. Л.: Энергия, 1976.
    6. Борьба с шумом на производстве: Справочник / Е.Я. Юдин, Л.А. Борисов; Под общ. ред. Е.Я. Юдина М.: Машиностроение, 1985. 400с., ил.
    7. Зинченко В.П. Основы эргономики. М.: МГУ, 1979. 179с.
  • 1848. Радиационная безопасность
    Информация пополнение в коллекции 12.01.2009

    Стремительное развитие техники и технологии, по всей видимости, остановить нельзя, несмотря на мрачные вехи истории прогресса, такие как авария на химическом заводе в Бхопале, унесшая 2.5 тыс. человек, взрыв емкостей со сжиженным газом под Мехико (400 чел. погибло и более 4000 получили ранения), авария летательных аппаратов “Челленджер”, “Титан”, “Дельта”. Все выше сказанное подводит к тому, что внедрение атомной энергетики является неизбежным процессом в рамках настоящего исторического развития общества. Замена органического топлива ядерным решит еще одну глобальную экологическую проблему, связанную с нарастающим загрязнением окружающей среды, уменьшением доли кислорода в воздухе и парниковым эффектом, возникшей при использовании в качестве топлива нефти, мазута, угля [3].

  • 1849. Радиационная безопасность при эксплуатации и ремонте оборудования Курской АЭС
    Методическое пособие пополнение в коллекции 21.12.2010

    1Ìåëü÷àéøèìè ÷àñòèöàìè âåùåñòâà ÿâëÿþòñÿ àòîìû, êîòîðûå ñîñòîÿò èç ïîëîæèòåëüíî çàðÿæåííûõ ÿäåð è äâèæóùèõñÿ âîêðóã íèõ îòðèöàòåëüíî çàðÿæåííûõ ýëåêòðîíîâ.  ÿäðàõ ñîñðåäîòî÷åíà ïî÷òè âñÿ ìàññà àòîìà. Àòîìíûå ÿäðà ñîñòîÿò èç ýëåìåíòàðíûõ ÷àñòèö äâóõ âèäîâ: íåéòðîíîâ è ïðîòîíîâ, êîòîðûå èìåþò ïî÷òè îäèíàêîâóþ ìàññó, ðàâíóþ îäíîé àòîìíîé åäèíèöå ìàññû (1/12 ìàññû èçîòîïà óãëåðîäà - 12). Ìàññà ýëåêòðîíà â 1836 ðàç ìåíüøå ìàññû ïðîòîíà. Íåéòðîí íå îáëàäàåò ýëåêòðè÷åñêèì çàðÿäîì, à ïðîòîí îáëàäàåò îäíèì ýëåìåíòàðíûì ïîëîæèòåëüíûì çàðÿäîì, ðàâíûì 4,8*10-10 åäèíèöû ÑÃÑ=1,6*10-19 Êë (êóëîí) è ðàâíûì ïî àáñîëþòíîé âåëè÷èíå îòðèöàòåëüíîìó ýëåêòðè÷åñêîìó çàðÿäó ýëåêòðîíà.

  • 1850. Радиационная защита предприятия. Обеспечение устойчивой работы предприятия в условиях радиоактивного заражения
    Информация пополнение в коллекции 12.01.2009

    Воздействие проникающей радиации ЯВ на ОЭ проявляется главным образом через ее действия на людей, конструкционные материалы и приборы, которые чувствительны к радиации. Поражающее же действие РЗ связано с заражением (загрязнением) местности, акватории и также с облучением людей. В практической дозиметрии в качестве основных параметров, характеризующих степень опасности поражения людей излучением и РЗ местности по - излучению, приняты соответственно доза излучения (табл. 20) и уровень радиации /10/.
    Устойчивость работы ОЭ в ЧС мирного и военного времени зависит в первую очередь от надежной защиты его рабочих и служащих. Поэтому оценивая устойчивость функционирования какого либо ОЭ к воздействию указанных поражающих факторов, необходимо оценить воздействие ионизирующих излучений на рабочих и служащих, занятых в производстве, а также воздействие на радиоэлектронную аппаратуру и материалы.
    Критерием устойчивости работы объекта при воздействии проникающей радиации и радиоактивного заражения является предельно допустимая доза (ПДД) облучения людей, которая не приводит к потере их работоспособности и заболеванию лучевой болезнью.
    ПДД или основной дозовой предел в случае выполнения аварийных работ на РЗ местности из-за аварий, катастроф на атомных станциях (АС) и других радиационно-опасных объектах (РОО), устанавливается "Нормами радиационной безопасности (НРБ)". Так, для действующих, строящихся, реконструируемых и проектируемых АС согласно НРБ-96 планируемое повышение облучения в дозе - эффективная доза в год: 100 м3в (10 бэр) с разрешения территориальных органов Госсанэпиднадзора и 200 м3в (20 бэр) только с разрешения Госкомсанэпиднадзора РФ /12,11/.
    Для военного времени при ЯВ / 1 / ПДД установлены следующие: при однократном облучении (в течении 4 сут.) - 50 Р; при многократном облучении - 100 Р (в течении 30 сут.), 200 Р (в течение 3 месяцев) и 300 Р (в течение 1 года).
    Условия работы ОЭ после ядерного взрыва или радиационной аварии, катастрофы на РОО характеризуются радиационной обстановкой (РО) на его территории, а следовательно, уровнем радиации и местом работы людей (в зданиях или на открытой местности).
    Исходными данными для оценки устойчивости работы ОЭ при РЗ местности и действии проникающей радиации являются: уровень радиации и доза излучения после ЯВ; характеристика производственных зданий и сооружений (расположение, конструкция, этажность и т.д.); характеристики защитных сооружений (ЗС); характеристики технологического оборудования, приборов, автоматики и используемых материалов.
    Оценка устойчивости работы промышленного объекта и др. ОЭ производится в такой последовательности:
    1. Определяется степень защищенности рабочих и служащих, характеризуемая коэффициентом ослабления (Kосл.) защитных сооружений или производственных зданий.
    В этом случае находятся значения каждого здания, сооружения, убежища и др. ЗС, в которых будет работать или отдыхать производственный персонал.
    2. Рассчитывается допустимая доза облучения людей и уровень радиации через 1ч после взрыва на данный рабочий день.
    Уровень радиации после взрыва и доза облучения персонала объекта определяются при выявлении и оценке РО по данным разведки местности.
    По значению дозы излучения оценивается устойчивость работы объекта согласно указанному определению по критерию устойчивости: DобПДД.
    3. Определяется критерий устойчивости работы ОЭ.
    При этом значение полученной дозы излучения сравнивается с ПДД согласно определению критерия устойчивости объекта: DобПДД - объект устойчив.
    4. Выявляется возможность герметизации помещений объекта для предотвращения распространения РВ и радиоактивных газов.
    5. Определяется режим радиационной защиты рабочих и служащих.
    По значению уровня радиации на ОЭ через 1ч после взрыва согласно методике оценки РО находится режим защиты персонала объекта.
    Типовой режим включает три этапа (периода):
    а) I этап - продолжительность прекращения работы объекта и пребывания людей в ЗС;
    б) II этап - продолжительность работы объекта с использованием ЗС для отдыха людей;
    в) III этап - продолжительность работы объекта с использованием для отдыха жилых домов с ограничением времени пребывания людей на открытой местности.
    Таким образом, допустимая продолжительность работы рабочих и служащих на промышленном объекте и режим их поведения в условиях РЗ будет зависеть от:
    - уровня радиации на ОЭ;
    - от значений Kосл. производственных зданий сооружений и ЗС, где будут работать и отдыхать люди;
    - от величины дозы излучения на данные сутки работы ОЭ.
    С учетом этих факторов и с использованием методики оценки РО определяется и вводится режим радиационной защиты рабочих и служащих объекта.
    Анализ результатов оценки устойчивости работы ОЭ в условиях воздействия проникающей радиации и РЗ завершается выводами, в которых указываются:
    ожидаемые дозы облучения на открытой РЗ местности;
    критерий устойчивости объекта;
    степень защиты персонала и оборудования;
    возможность непрерывной работы объекта в обычном режиме и при РЗ территории ОЭ;
    мероприятия по повышению устойчивости работы объекта.

  • 1851. Радиационная и химическая обстановки
    Информация пополнение в коллекции 12.01.2009

    в подвале D=7.57 Выводы: В случае а) при получении дозы облучения D в течение 4 суток возможно заболевание населения лучевой болезнью 2 степени, при дозе 200…400 рад. Скрытый период продолжается около недели, после чего появляются тяжелое недомогание, расстройство функций нервной системы, головные боли, головокружение, частые рвоты, повышение температуры тела. Количество лейкоцитов в крови уменьшается более чем в два раза. Смертельные исходы могут доходить до 20%. При активном лечении выздоровление наступает через 1,5…2 месяца.

  • 1852. Радиационная, химическая разведка и контроль в мотострелковом батальоне на боевой машине пехоты в наступлении
    Дипломная работа пополнение в коллекции 06.03.2012

    Наступление батальона включает последовательное выполнение ряда тактических задач, основными из которых являются: занятие исходного положения для наступления, огневое поражение противника. Ближайшая задача батальона первого эшелона заключается в уничтожении противника в опорных пунктах рот первого эшелона в указанной полосе наступления и овладении ими. Дальнейшей задачей является развитие наступления, разгром, во взаимодействии с соседними батальонами, противника в глубине района обороны и овладение первой позицией. При этом под разгромом понимается нанесение такого ущерба противнику, при котором он теряет способность к сопротивлению. По опыту войн и учений разгром противника достигается, как правило, нанесением ему не менее 50 % потерь. Направление продолжения наступления определяется с таким расчетом, чтобы обеспечивалось выполнение дальнейшей задачи соединения (части). После выполнения боевых задач подразделениям первого эшелона ставятся новые задачи. Содержание задач может быть различным и определяется сложившейся обстановкой. В одних условиях задачей может быть развитие наступления в глубину и овладение важным рубежом, в других - отражение контратаки противника.

  • 1853. Радиационно-опасные объекты
    Информация пополнение в коллекции 09.12.2008

    Для закрепления (химико-биологического задернения) отдезактивированных и сильно пылящих участков местности нашли применение рецептуры, содержащие в своем составе пылеподавляющие композиции (ССБ, ММ-1, латекс) в качестве основы, минеральные и органические удобрения и смеси семян многолетних злаковых и бобовых трав.
    В качестве основных технических средств пылеподавления используются поливомоечные машины, войсковые авторазливочные станции, сельскохозяйственная авиация.
    Одной из самых эффективных мер радиационной защиты является дезактивация. Наиболее подходящими сроками проведения дезактивации, если не рассматривать необходимость ее для обеспечения безопасности при эвакуации населения или проведении неотложных аварийных работ на промплощадке аварийного объекта (предприятия), является период поздней фазы аварии. Это определяется временем, необходимым для планирования и организации дезактивационных работ, и сроками наступления относительной стабилизации радиационной обстановки, когда прекращается поступление радиоактивных веществ из источника выброса и заканчивается формирование следа радиоактивного загрязнения.

    Основными методами дезактивации отдельных объектов являются:
    а) для открытых территорий (грунта):
    1.снятие и последующее захоронение верхнего загрязненного слоя грунта (механический способ);
    2.дезактивация методом экранирования;
    3.очистка методом вакуумирования;
    4.химические методы дезактивации грунтов (промывка);
    5.биологические методы дезактивации (естественная дезактивация);
    б) для дорог и площадок с твердым покрытием:
    1.смыв радиоактивных загрязнений струёй воды или дезактивирующих растворов (жидкостный способ);
    2.удаление верхнего слоя специальными средствами или абразивной обработкой;
    3.дезактивация методом экранирования;
    5.очистка методом вакуумирования;
    6.сметание щетками поливомоечных машин (многократно);
    в) для участков местности, покрытых лесокустарниковой растительностью:
    1.лесоповал и засыпка чистым грунтом после опадания кроны;
    2.срезание кроны с последующим ее сбором и захоронением;
    г) для зданий и сооружений:
    1.обработка дезактивирующими растворами (с щетками и без них);
    2.обработка высоконапорной струёй воды;
    3.очистка методом вакуумирования;
    5.замена пористых элементов конструкций;
    6.снос строении.

    Основными этапами дезактивационных работ являются паспортизация объекта дезактивации, подготовительные мероприятия и непосредственно дезактивация объекта.
    Очередность проведения дезактивационных работ на территории зоны радиоактивного загрязнения определяется необходимостью последовательной дезактивации, начиная с наиболее загрязненных и заканчивая менее загрязненными местами и участками постоянного или длительного пребывания населения в процессе его жизнедеятельности или трудовой деятельности. Очередность дезактивации зданий, сооружений, средств производства, транспортных средств, дорог должна также определяться необходимостью первоочередной дезактивации наиболее загрязненных объектов, находящихся в постоянном обращении.
    При выборе соответствующих приемов для конкретных объектов дезактивации необходимо руководствоваться наличием ресурсов, ожидаемой эффективностью и производительностью. Следует помнить, что практически всегда эффективность дезактивации обеспечивается тщательным соблюдением соответствующей технологии и постоянным оперативным дозиметрическим или радиометрическим контролем, иначе может потребоваться повторение операций или увеличение их числа при многократных обработках. Наиболее эффективными являются ручные приемы, которые, однако, характеризуются наибольшей трудоемкостью и повышенным облучением персонала.
    При проведении дезактивации участков территории необходимо определять порядок работ (движение транспорта и персонала), который позволяет предотвратить новое радиоактивное загрязнение уже отдезактивированных участков. В этом плане дезактивацию следует вести в направлении от более загрязненных участков к менее загрязненным. Для дезактивации транспортных средств и другой самоходной техники целесообразно создание стационарных пунктов дезактивации с централизованным обеспечением техническими средствами, участками разборки техники, системами локализации и обработки образующихся радиоактивных отходов.
    При проведении дезактивации зданий, сооружений, средств производства, транспортных средств с применением методов, вызывающих пылеобразование, требуется предварительное или одновременное увлажнение. Следует учитывать возможность перераспределения радиоактивного загрязнения в ходе дезактивации зданий и сооружений. В частности, при дезактивации кровель и стен (вертикальных поверхностей) мокрыми методами стекающие растворы могут привести к концентрированию радиоактивного загрязнения в отдельных местах на поверхности грунта, что потребует повторной его дезактивации, если она была проведена ранее.
    Не менее важным мероприятием при ликвидации последствий радиационной аварии является сбор и захоронение (размещение) радиоактивных отходов.

    В зависимости от применяемых методов дезактивации локализация отходов может быть достигнута следующими способами:
    1.локализация образующихся объемов загрязненного грунта и других материалов непосредственно в транспортных средствах при дезактивации методами снятия поверхностного слоя грунта, щебня или всего объема мусора и т.д.;
    2.локализация отходов, образующихся в ходе дезактивации механическими (дробеструйными или гидроабразивными) методами, путем отсоса образующейся пыли или пульпы;
    3.локализация жидких отходов в специальных емкостях-сборниках;
    4.локализация, как дополняющий дезактивацию технологический прием, осуществляемый ручными или механизированными методами при дезактивации, включающий разборку конструкций, а также механические и физико-химические способы.
    На стационарных пунктах дезактивации должны быть задействованы системы очистки; схема очистных сооружений должна включать оборотное водопользование, системы сбора отходов, их отстоя, коагуляции, ионообменной сорбции, сбора и удаления шлаков, концентрирующих радиоактивность. Желательно, чтобы мероприятия позднего периода включали создание специальных предприятий по обработке большей части накопленных в ходе дезактивационных работ радиоактивных отходов в жидком и твердом виде, включая почву. Грунтовые могильники радиоактивных отходов должны быть расположены в местах, выбор которых определяется:
    1.гидрогеологическими и другими природными характеристиками, позволяющими осуществлять длительное хранение отходов без опасности проникновения их в окружающую среду;
    2.малой хозяйственной ценностью участков территории размещения могильников;
    3.возможностью организации постоянного контроля за состоянием могильников и ограничения доступа к ним в ходе хозяйственной деятельности.

  • 1854. Радиационные аварии, их виды, динамика развития, основные опасности
    Контрольная работа пополнение в коллекции 03.03.2011

    Деятельность людей на зараженной местности значительно затруднена из-за медленного спада радиоактивности. Мероприятия по ограничению облучения населения регламентируются "Нормами радиационной безопасности НРБ-99", установленными Министерством здравоохранения России в 1999 году, которые, в частности, сводятся к следующему:

    • В случае возникновения аварии должны быть приняты практические меры для восстановления контроля над источником излучения, сведения к минимуму доз облучения, количества облучаемых лиц, радиоактивного загрязнения окружающей среды, экономических и социальных потерь;
    • Необходимо соблюдать принцип оптимизации вмешательства, т.е. польза от защитных мероприятий должна превышать вред, наносимый ими;
    • Срочные меры защиты следует применять в случае, если доза предполагаемого облучения за короткий срок (двое суток) достигает уровня, при котором возможны клинически определяемые детерминированные эффекты;
    • При хроническом облучении в течение жизни защитные мероприятия становятся обязательными, если годовые поглощенные дозы превышают установленные пределы;
    • При планировании защитных мероприятий на случай радиационной аварии органами Госсанэпиднадзора устанавливаются уровни вмешательства (дозы и мощности доз облучения) применительно к конкретному радиационному объекту и условия его размещения с учетом вероятных типов аварии;
    • При аварии, повлекшей за собой радиоактивное загрязнение обширной территории, на основании прогноза радиационной обстановки устанавливается зона радиационной аварии и осуществляются соответствующие мероприятия по снижению уровней облучения населения;
    • На поздних стадиях развития аварий, повлекших за собой загрязнение обширных территорий долгоживущими радионуклидами, решения о защитных мероприятиях принимаются с учетом сложившейся радиационной обстановки и конкретных социально - экономических условий.
  • 1855. Радиационные и химические разведки. Дозиметрический контроль с помощью приборов
    Контрольная работа пополнение в коллекции 18.07.2006

     

    1. Защита объектов народного хозяйства от оружия массового поражения. Справочник, / Г. П.Демиденко, Е. П. Кузьменко, П. П. Орлов и др.,Киев, 1989 г.
    2. Атаманюк В. Г. Гражданская оборона, Москва,1986 г.
    3. Максимов М.Т. Радиационные загрязнения и их измерения. Москва. 1989
    4. Зюзин В.С. Защита персонала и населения от СДЯВ на химически опасном объекте
    5. Средства химической разведки, используемые в системах гражданской обороны. Учебное пособие, / Андреев В.А., Савастинкевич В.М. Москва, 1997 г.
    6. Безопасность жизнедеятельности. Часть 3: Чрезвычайные ситуации. Учебное пособие под ред. А.В. Непомнящего, Г.П. Шилякина. Таганрог: ТРТУ,1994г.
    7. Толмачева Л.В. Методика оценки радиационной и химической обстановки при чрезвычайных ситуациях: Методическое руководство для самостоятельной работы студентов по курсу “БЖ”: Таганрог: Изд-во ТРТУ, 1999г.
    8. Шубин Е.П. “Гражданская Оборона” Москва 1991г
    9. «Гражданская оборона». А.Т. Алтунин. М.: Воениздат, 1982.
    10. Учебно-методическое пособие для проведения занятий по гражданской обороне с населением». А.П. Руденко, Ю.Н. Косов. М.: Энергоатомиздат, 1988
  • 1856. Радиационные поражения
    Доклад пополнение в коллекции 12.01.2009

    Поток проникающей радиации ядерного взрыва состоит из гамма - лучей и нейтронов, которые действуют на организм человека в момент взрыва (в течение 10 - 15 секунд). На местности, зараженной продуктами ядерного взрыва поражение незащищенных людей может наступить при внешнем воздействии смешанного бета - гамма - излучения и в результате попадания продуктов ядерного взрыва внутрь организма и на кожные покровы. В основе механизма возникновения радиационных поражений организма на первом этапе лежат физические процессы, связанные с поглощением энергии излучения и образованием ионизированных атомов и молекул. В результате нарушаются биологические процессы и функции в клетках, органах и системах организма и развивается лучевая болезнь. Наиболее радиочувствительными являются органы кроветворения, желудочно-кишечный тракт, половые клетки, подвергаются раздражению нервная и эндокринная системы. Нарушение деятельности центральной нервной системы приводит к изменениям в деятельности внутренних органов и тканей.

  • 1857. радиационные ЧС
    Информация пополнение в коллекции 12.01.2009

    Кроме этого, на объектах экономики также создаются и формирования служб ГО: спасательные, медицинские, противопожарные, инженерные, аварийно-технические, автомобильные формирования, а также разведки, радиационного и химического наблюдения, радиационной и химической защиты, связи, механизации работ, охраны общественного порядка, питания, торговли и др. Вид и количество формирований, а также их численность определяется с учетом особенностей производственной деятельности ОЭ в мирное и военное время, наличия людских ресурсов, специальной техники и имущества, запасов материально-технических средств, а также объема и характера задач, возлагаемых на формирования в соответствии с планами гражданской обороны. Личный состав формирований ГО комплектуется за счет численности работников организаций, продолжающих работу в период мобилизации и в военное время. Формирования ГО оснащаются специальной техникой и имуществом, не предназначенными при объявлении мобилизации для поставки в Вооруженные Силы РФ, другие войска, воинские формирования, органы и специальные формирования или использования в их интересах. Основными видами специальной техники и имущества являются : средства индивидуальной защиты, медицинские средства защиты, приборы радиационного и химического контроля, средства связи, оповещения и др.

  • 1858. Радиация и мутации у человека
    Доклад пополнение в коллекции 12.01.2009

    В середине 80-х годов у человека и других живых организмов был открыт новый класс последовательностей ДНК, получивших название минисателлиты. Они состоят из относительно коротких повторяющихся фрагментов ДНК длиной 10-60 нуклеотидов ("букв", из которых построена ДНК), собранных вместе подобно вагонам в поезде. Мутации в минисателлитах приводят к изменению числа повторов, что очень напоминает работу сцепщика на железнодорожной станции, присоединяющего или отсоединяющего вагоны в составе. Самое главное - эти мутации происходят с неимоверной частотой, которая более чем в 1000 раз превышает таковую для обычных генов. Если так, то изучив сотню-другую детей, можно найти во много раз больше мутаций среди минисателлитной ДНК, чем при анализе сотен тысяч детей, исследованных в отношении генов, кодирующих белки. А если частота мутаций в минисателлитах увеличивается при воздействии радиации, то надо проанализировать пару сотен детей, рожденных от облученных родителей, для того чтобы обнаружить изменения в частоте мутаций. Если минисателлиты столь перспективны для радиационной генетики, то их надо использовать. Мы начали эти работы в 1991 году. В них принимали участие ученые трех стран - России, Великобритании и Белоруссии. Большая их часть проводилась в Великобритании, в лаборатории профессора Алека Джеффрейза, который открыл минисателлиты в середине 80-х годов. Сначала мы проверили, оказывает ли влияние радиация на минисателлитные мутации у лабораторных мышей. Изучив всего 150 потомков облученных животных, мы обнаружили практически двукратное увеличение частоты мутаций у них по сравнению с таковой у необлученных мышей. "Всего" означает, что при использовании обычных генов с низкой частотой мутации, аналогичный результат был получен на десятках-сотнях тысяч животных. Если так, то, во-первых, минисателлиты являются чувствительными к радиации, а во-вторых, они позволяют обнаруживать эффекты радиации при анализе очень малого числа потомков.

  • 1859. Радиация и человек
    Курсовой проект пополнение в коллекции 12.09.2010

    Воздействие строительных материалов может проявляться двояко. С одной стороны, они защищают наше тело от внешней радиации, поглощая ее в своей толщи. С другой стороны, многие строительные материалы сами богаты радиоактивными естественными нуклидами и поэтому могут повышать мощность облучения в помещениях. Такие строительные материалы, как дерево, тепловые прокладки (войлок, стружки), почти не содержат или содержат очень мало радиоактивных нуклидов. В деревянных помещениях средний уровень облученности меньше, чем снаружи, вне дома. Отношение мощностей облучения внутри дома к внешнему облучению оказывается меньше единицы 0,7-0,6 (коэффициент защиты). Низко радиоактивны и большинство пластиков, природный цемент, мрамор, дающие коэффициент защиты 0,8-0,9. С другой стороны, такие строительные материалы, как гранит, кирпич и бетон, имеющие в своем составе естественные радионуклиды, собственным излучением перекрывают защиту от внешнего облучения, и коэффициент возрастает от 1,3 до 1,7. Так, например, измерения, проведенные во многих домах в Швеции, показали, что средняя мощность облучения вне помещения в 90 мрад/год в деревянных домах снижалась до 57, в кирпичных поднималась до 112, а в бетонных достигала 172 мрад/год. Обратная зависимость наблюдалась в колебаниях облучения в районах с повышенной естественной радиоактивностью. Например, исследования, проведенные в районе Керала (Индия), показали, что в легких деревянных, бамбуковых и глиняных хижинах облучение было высоким (в некоторых местностях достигало 2800 мрад/год), так как эти материалы не защищали от высокого внешнего фона, а в кирпичных и цементных зданиях проявлялась защита, и мощность дозы снижалась до 500-700 мрад/год.

  • 1860. Радиация рядом с нами
    Доклад пополнение в коллекции 09.12.2008

    Радионуклиды, естественно, попали в моря и реки, просочились грунтовые воды… невозможно даже говорить об относительной чистоте Десны и Днепра. Невозможно говорить о безопасности. Растет общая смертность населения Украины - ежегодно на 7-8-9 процентов. До шестидесятипятилетнего возраста не доживают более 38 процентов мужчин и почти 19 процентов женщин (в среднем в Украине мужчины на 10 лет живут меньше, чем женщины). За последние 10 лет - до 1990 года, в возрасте до одного года умерло 116433 ребенка. И сегодня смертность в Украине выше, чем рождаемость. Причин много, но среди них одно из главных мест занимает, конечно, Чернобыль. Болезни детей и внуков программируются на генетическом уровне в организмах отцов. Генетическое загрязнение окружающей среды приводит к тому, что программу гибели и уничтожения осваивает природа уничтожения человека, который уничтожил здоровье природы в зародыше. Вот почему нужен закон, провозглашающий Природу высшим по отношению к человеку субъектом права. Закон, который не спасет, но даст надежду на спасение хотя бы в будущем. Закон, единый для всех времен и народов. Закон прав Природы, подобный Декларации о правах человека, гармонизирующий и гуманизирующий отношения и взаимозависимости человека и окружающей среды. Но, обязательно провозглашающий Природу высшим по отношению к человеку субъектом права.