Авиация, Астрономия, Космонавтика
-
- 341.
Развитие авиации
Информация пополнение в коллекции 09.12.2008 Следующим в этой серии был " ИЛЬЯ МУРОМЕЦ " , первоначально имевший четыре двигателя мощностью 100 л.с. каждый , в дальнейшем заменённые более мощными - по 220 л.с. 4 июня 1914 года на самолете " ИЛЬЯ МУРОМЕЦ " был установлен мировой рекорд высоты полета с десятью членами экипажа на борту . В августе того же года этот самолет был принят на вооружение русской армии в качестве разведывательного . На последних модификациях машин этого класса экипаж состоял из семи - восьми человек , а вооружение включало восемь пулеметов, самолет мог брать до 30 пудов ( пуд = 16 кг. -Ф.С. ) бомб , частично размещаемых в фюзеляже . Всего было построено до 80 самолетов " ИЛЬЯ МУРОМЕЦ " , которые участвовали в первой мировой и гражданской войнах . Это были крупнейшие по тому времени воздушные корабли . По техническим данным , вооружению и бомбовой нагрузке " ИЛЬЯ МУРОМЕЦ " превосходил английский тяжелый бомбардировщик ВИМИ и немецкий самолет фирмы " ГОТАМ ФРИДРИХСХАФЕН " ( хотя последний являлся , по существу , несколько изменённой копией единственного сбитого за годы первой мировой войны самолета "ИЛЬЯ МУРОМЕЦ" ) . Недаром французское военное министерство через своего атташе в Петрограде обратилось с просьбой сообщить данные, относящиеся к аэропланам типа " ИЛЬЯ МУРОМЕЦ ".
- 341.
Развитие авиации
-
- 342.
Размеры звезд. Плотность их веществ
Реферат пополнение в коллекции 09.12.2008
- 342.
Размеры звезд. Плотность их веществ
-
- 343.
Разработка микроспутника связи
Курсовой проект пополнение в коллекции 09.07.2012 Практический опыт ведения боевых действий в различных регионах мира свидетельствуют о резком возрастании роли информационно-психологического фактора в современных условиях. При этом вооруженным силам все чаще приходится сталкиваться с необходимостью выполнения специфических задач, не требующих непосредственного применения силы. Информация все больше используется как средство для достижения политических, экономических, и военных целей на всех уровнях. Вторая половина 90-х годов характеризуется осмыслением опыта боевого применения вооруженных сил на фоне широкого внедрения информационных технологий, использование передовых достижений науки и техники во всех аспектах проведения военных операций. Все это способствовало формированию новых концептуальных подходов к проблемам информационно-психологического воздействия, интеграции его традиционных форм, проведению психологических операций в рамках единой системы воздействия на противника. Если до настоящего времени основное внимание уделялось военной безопасности государства, то сегодня уже стало очевидной ограниченность подобного подхода. На смену опасности возникновения ядерной катастрофы может прийти угроза применения «информационного оружия», которая по мощи воздействия не уступит оружию массового поражения. В этом контексте становится понятно стремление США выработать четкие принципы ведения «информационной войны», под которой, согласно официальным документам МО США, понимаются «действия, предпринимаемые для достижения информационного превосходства над противником в интересах национальной военной стратегии и осуществляемой путем влияния на информацию и информационной системы противника при одновременной защите собственной информации и собственных информационных систем».
- 343.
Разработка микроспутника связи
-
- 344.
Разум во вселенной
Информация пополнение в коллекции 12.01.2009 Сторонники представления об обязательности технологического пути развития ВЦ (внеземных цивилизаций) полагают, что главнейшим признаком высокоразвитой цивилизаций должно быть все возрастающее потребление энергии для практических нужд ВЦ. Так, например, человечество на Земле может быть отнесено к ВЦ 1 типа, поскольку оно уже в плотную подходит к овладению энергии своей планеты. Внеземные цивилизации 2 типа полностью овладели энергией центрального светила своей системы, а ВЦ 3 типа в своей практической деятельности использует энергию своей галактики. Такую классификацию внеземных цивилизаций предложил советский исследователь Н.С. Кадрашев.
- 344.
Разум во вселенной
-
- 345.
Ракеты С.П. Королева
Информация пополнение в коллекции 12.01.2009 Тактико-технические характеристикиМаксимальная дальность стрельбы, км8000Стартовая масса, т283,0Масса полезной нагрузки, кгдо 5400Масса топлива, т250Длина ракеты, м31,4Диаметр ракеты, м11,2Тип головной частиМоноблочная, ядерная, отделяемаяДвухступенчатая ракета Р-7 выполнена по “пакетной ” схеме. Ее первая ступень представляла собой четыре боковых блока, каждый длиной 19 м и наибольшим диаметром 3 м, расположенных симметрично вокруг центрального блока (вторая ступень ракеты) и соединенных с ним верхним и нижним поясами силовых связей. Конструкция всех блоков одинакова и включала опорный конус, топливные баки, силовое кольцо, хвостовой отсек и двигательную установку. На каждом блоке первой ступени устанавливались ЖРД РД-107 конструкции ГДЛ-ОКБ, руководимого академиком В. Глушко, с насосной подачей компонентов топлива. Он был выполнен по открытой схеме и имел шесть камер сгорания. Две из них использовались как рулевые. ЖРД развивал тягу 78 т у земли.
Центральный блок ракеты состоял из приборного отсека, баков для окислителя и горючего, силового кольца, хвостового отсека, маршевого двигателя и четырех рулевых агрегатов. На второй ступени устанавливался ЖРД РД-108, аналогичный по конструкции с РД-107, но отличавшийся, в основном, большим числом рулевых камер. Он развивал тягу у земли до 71 т и работал дольше, чем ЖРД боковых блоков.
Для всех двигателей использовалось двухкомпонентное топливо: окислитель переохлажденный жидкий кислород, горючее керосин Т-1. Для обеспечения работы автоматики ракетных двигателей, применялись перекись водорода и жидкий азот. Чтобы достичь заданной дальности полета конструкторы установили автоматическую системы регулирования режимов работы двигателей и систему одновременного опорожнения баков (СОБ), что позволило сократить гарантированный запас топлива. Конструктивно-компоновочная схема Р-7 обеспечивала запуск всех двигателей при старте на земле с помощью специальных пирозажигательных устройств, установленных в каждую из 32 камер сгорания.
- 345.
Ракеты С.П. Королева
-
- 346.
Расчет закрытой косозубой нереверсивной турбины
Информация пополнение в коллекции 12.01.2009 - коэффициент учитывающий повышенную нагрузочную способность косозубых передач по сравнению с прямозубыми передачами за счёт увеличения контактных линий. Для прямозубых колёс , а для косозубых и конических от 1,15 до 1,35
- 346.
Расчет закрытой косозубой нереверсивной турбины
-
- 347.
Расчёт статистических и вероятностных показателей безопасности полётов
Реферат пополнение в коллекции 29.09.2010
- 347.
Расчёт статистических и вероятностных показателей безопасности полётов
-
- 348.
Расширение вселенной и красное смещение
Информация пополнение в коллекции 12.01.2009 В 20-х годах, когда астрономы начали исследование спектров звезд других галактик, обнаружилось нечто еще более странное: в нашей собственной Галактике оказались те же самые характерные наборы отсутствующих цветов, что и у звезд, но все они были сдвинуты на одну и ту же величину к красному концу спектра. Чтобы понять смысл сказанного, следует сначала разобраться с эффектом Доплера. Как мы уже знаем, видимый свет это колебания электромагнитного поля. Частота (число волн в одну секунду) световых колебаний чрезвычайно высокаот четырехсот до семисот миллионов миллионов волн в секунду. Человеческий глаз воспринимает свет разных частот как разные цвета, причём самые низкие частоты соответствуют красному концу спектра, самые высокие фиолетовому. Представим себе источник света, расположенный на фиксированном расстоянии от нас (например, звезду), излучающий с постоянной частотой световые волны. Очевидно, что частота приходящих волн будет такой же, как та, с которой они излучаются (пусть гравитационное поле галактики невелико и его влияние несущественно). Предположим теперь, что источник начинает двигаться в нашу сторону. При испускании следующей волны источник окажется ближе к нам, а потому время, за которое гребень этой волны до нас дойдет, будет меньше, чем в случае неподвижной звезды. Стало быть, время между гребнями двух пришедших волн будет меньше, а число волн, принимаемых нами за одну секунду (т.е. частота), будет больше, чем когда звезда была неподвижна. При удалении же источника частота приходящих волн будет меньше. Это означает, что спектры удаляющихся звезд будут сдвинуты к красному концу (красное смещение), а спектры приближающихся звезд должны испытывать фиолетовое смещение. Такое соотношение между скоростью и частотой называется эффектом Доплера, и этот эффект обычен даже в нашей повседневной жизни. Прислушайтесь к тому, как идет по шоссе машина: когда она приближается, звук двигателя выше (т. е. выше частота испускаемых им звуковых волн), а когда, проехав мимо, машина начинает удаляться, звук становится ниже. Световые волны и радиоволны ведут себя аналогичным образом. Эффектом Доплера пользуется полиция, определяя издалека скорость движения автомашин по частоте радиосигналов, отражающихся от них. Доказав, что существуют другие галактики, Хаббл все последующие годы посвятил составлению каталогов расстояний до этих галактик и наблюдению их спектров. В то время большинство ученых считали, что движение галактик происходит случайным образом и поэтому спектров, смещенных в красную сторону, должно наблюдаться столько же, сколько и смещенных в фиолетовую. Каково же было удивление, когда у большей части галактик обнаружилось красное смещение спектров, т. е. оказалось, что почти все галактики удаляются от нас! Еще более удивительным было открытие, опубликованное Хабблом в 1929 г.: Хаббл обнаружил, что даже величина красного смещения не случайна, а прямо пропорциональна расстоянию от нас до галактики. Иными словами, чем дальше находится галактика, тем быстрее она удаляется! А это означало, что Вселенная не может быть статической, как думали раньше, что на самом деле она непрерывно расширяется и расстояния между галактиками все время растут.
- 348.
Расширение вселенной и красное смещение
-
- 349.
Расширяющася Вселенная
Информация пополнение в коллекции 31.07.2010
- 349.
Расширяющася Вселенная
-
- 350.
Расширяющаяся Вселенная и красное смещение
Информация пополнение в коллекции 12.01.2009 Поэтому историю научной космогонии справедливее было бы начать не с Декарта, а с Канта, нарисовавшего картину "механического происхождения всего мироздания". Именно Канту принадлежит первая в научно-космогоническая гипотеза о естественном механизме возникновения материального мира. В безграничном пространстве Вселенной, воссозданной творческим воображением Канта, существование бесчисленного количества других солнечных систем и иных млечных путей столь же естественно, как и непрерывное образование новых миров и гибель старых. Именно с Канта начинается сознательное и практическое соединение принципа всеобщей связи и единства материального мира. Вселенная перестала быть совокупностью божественных тел, совершенных и вечных. Теперь перед изумленным человеческим разумом предстала мировая гармония совершенно иного рода естественная гармония систем взаимодействующих и эволюционирующих астрономических тел, связанных между собой как звенья одной цепи природы. Однако необходимо отметить две характерные особенности дальнейшего развития научной космогонии. Первой из них является то, что послекантовская космогония ограничила себя пределами Солнечной системы и вплоть до середины ХХ века речь шла только о происхождении планет, тогда как звезды и их системы оставались за горизонтом теоретического анализа. Второй особенностью является то, что ограниченность наблюдательных данных, неопределенность доступной астрономической информации, невозможность опытного обоснования космогонических гипотез в конечном счете обусловили превращение научной космогонии в систему абстрактных идей, оторванных не только от остальных отраслей естествознания, но и от родственных разделов астрономии. [2]
- 350.
Расширяющаяся Вселенная и красное смещение
-
- 351.
Реактивні двигуни
Информация пополнение в коллекции 09.05.2010 Як відомо, коефіцієнт корисної дії механізму, пристосування чи двигуна суть відношення корисної роботи до всієї затраченої роботи. Корисною частиною ракети є, як вже було сказано, її оболонка, а маса оболонки, обчислена з рівняння Ціолковського, (без урахування опору повітря) повинна становити приблизно частину маси ракети. У сучасних балістичних ракет кінцева маса у сотні разів менша стартової маси. Значить, і прискорення також у сотні разів зростає по мірі витрати палива. Звідси випливає, що приріст швидкості, що його отримує ракета при витраті однієї і тієї ж кількості палива, сильно залежить від того, у який момент часу це паливо витрачається: доки запас палива на борту великий і маса ракети велика, приріст швидкості малий; коли палива залишилось мало і маса ракети значно зменшилася, приріст швидкості великий. По цій причині навіть велике збільшення запасу палива не може значно підвищити кінцеву швидкість ракети: адже додаткова кількість палива буде використана тоді, коли маса ракети велика, а прискорення мале, а значить, малий і додатковий приріст швидкості. Крім того, якщо ми збільшуватимемо масу палива, ми зменшимо ККД реактивного двигуна, і без того найменший серед ККД всіх відомих двигунів і машин на Землі. Зате збільшення швидкості реактивного струменя при незмінному запасі палива (ККД хоча б не зменшується!) дозволяє значно збільшити кінцеву швидкість ракети. Так, збільшуючи швидкість реактивного струменя, не змінюючи секундної витрати палива, ми, тим самим, збільшуємо прискорення у тому ж відношенні. Для збільшення швидкості реактивного струменя соплу ракети надають спеціальної форми. Оскільки швидкість реактивного струменя збільшується по мірі росту температури газу, що утворює струмінь, вибирають паливо, що дає по можливості вищу температуру згорання.
- 351.
Реактивні двигуни
-
- 352.
Реактивные двигатели, устройство, принцип работы
Информация пополнение в коллекции 09.12.2008 Рассмотрим этот процесс применительно к реактивным двигателям. Начнем с камеры сгорания двигателя, в котором тем или иным способом, зависящим от типа двигателя и рода топлива, уже создана горючая смесь. Это может быть, например, смесь воздуха с керосином, как в турбореактивном двигателе современного реактивного самолёта, или же смесь жидкого кислорода со спиртом, как в некоторых жидкостных ракетных двигателях, или, наконец, какое-нибудь твёрдое топливо пороховых ракет. Горючая смесь может сгорать, т.е. вступать в химическую реакцию с бурным выделением энергии в виде тепла. Способность выделять энергию при химической реакции, и есть потенциальная химическая энергия молекул смеси. Химическая энергия молекул связана с особенностями их строения, точнее, строения их электронных оболочек, т.е. того электронного облака, которое окружает ядра атомов, составляющих молекулу. В результате химической реакции, при которой одни молекулы разрушаются, а другие возникают, происходит, естественно, перестройка электронных оболочек. В этой перестройке - источник выделяющейся химической энергии. Видно, что топливами реактивных двигателей могут служить лишь такие вещества, которые при химической реакции в двигателе (сгорании) выделяют достаточно много тепла, а также образуют при этом большое количество газов. Все эти процессы происходят в камере сгорания, но остановимся на реакции не на молекулярном уровне (это уже рассмотрели выше), а на "фазах" работы. Пока сгорание не началось, смесь обладает большим запасом потенциальной химической энергии. Но вот пламя охватило смесь, ещё мгновение - и химическая реакция закончена. Теперь уже вместо молекул горючей смеси камеру заполняют молекулы продуктов горения, более плотно "упакованные". Избыток энергии связи, представляющей собой химическую энергию прошедшей реакции сгорания, выделился. Обладающие этой избыточной энергией молекулы почти мгновенно передали её другим молекулам и атомам в результате частых столкновений с ними. Все молекулы и атомы в камере сгорания стали беспорядочно, хаотично двигаться со значительно более высокой скоростью, температура газов возросла. Так произошел переход потенциальной химической энергии топлива в тепловую энергию продуктов сгорания.
- 352.
Реактивные двигатели, устройство, принцип работы
-
- 353.
Рельеф спутников Юпитера
Информация пополнение в коллекции 09.12.2008 Список Литературы
- Иванов М.А., Котова И., Базилевский А.Т., Результаты 32 микросимпозиума «Вернадский-Браун», 2000, стр. 68-69.
- Иванов М.А., Базилевский А.Т., Результаты 30 микросимпозиума «Вернадский-Браун», 1999, стр. 29-30.
- Короновский Н.В., Ясаманов Н.А., «Геология», 2003, 387 стр., Москва, Наука.
- Леонтьев О.К., Рычагов Г.И., Общая геоморфология. Высшая школа, Москва. 1988, 319 стр.
- Лукашов А.А., Рельеф планетных тел. МГУ. 1996, 111 стр.
- Маракушев А.А. и др., Космическая петрология, 2003, стр. 358-365.
- Уральская В.С., Земля и Вселенная. №5/2002. Стр. 25-29
- Хаин В.Е., Ломизе М.Г., Геотектоника с основами геодинамики. КДУ, Москва. 2005, 560 стр.
- Шевченко В.В., Земля и Вселенная №3/2004 стр. 104-106
- Щукин И.С., Общая геоморфология, т.2. МГУ. 1964, 563 стр.
- Fagents S.A., Kadel S.D., Greeley R., 29 конференция по наукам о планетах и Луне, LPI, Хьюстон, 1998.
- Fagents S.A., Greeley R., 32 конференция по наукам о планетах и Луне, LPI, Хьюстон, 2001.
- Fagents S.A., Kadel S.D., Greeley R., 29 конференция по наукам о планетах и Луне, LPI, Хьюстон, 1998.
- Greeley R., Planetary Landscapes, 1985, Essex, UK.
- Head J.W., Результаты 30 микросимпозиума «Вернадский-Браун», 1999, стр. 18-19.
- Head J.W., Pappalardo R. и др., 29 конференция по наукам о планетах и Луне, LPI, Texas, 1998.
- Head J.W., 31 конференция по наукам о планетах и Луне LPI, Хьюстон, 2000.
- Hoppa G.V., Tufts B.R., Greenberg R., Geissler P.E., 31 конференция по наукам о планетах и Луне LPI, Хьюстон, 2000.
- Keszthelyi L., McEwen A., Klaasen K., 29 конференция по наукам о планетах и Луне, LPI, Хьюстон, 1998: http://www.lpi.usra.edu/meetings/LPSC98
- McEwen A.S. 1998 Science, 281, 87-90
- Pappalardo R.Т., Greeley R. и др., Результаты 26 микросимпозиума «Вернадский-Браун», 1997, стр. 94-95.
- Pappalardo R.T., Greeley R. и др., Результаты 26 микросимпозиума «Вернадский-Браун», 1997, стр. 100-101.
- Radebaugh J., Keszthelyi L., McEwen A., 30 конференция по наукам о планетах и Луне, LPI, Хьюстон, 1999.
- Radebaugh J., Keszthelyi L., McEwen A., 31 конференция по наукам о планетах и Луне LPI, Хьюстон, 2000.
- Schenk P.M., Wilson R.R., 32 конференция по наукам о планетах и Луне, LPI, Хьюстон, 2001.
- Schenk P., Bulmer M, 31 конференция по наукам о планетах и Луне LPI, Хьюстон, 2000.
- Schenk P.M., 1997, http://www.lpi.usra.edu/resources/outerp/gany.html
- Schuster P. и др., Результаты 30 микросимпозиума «Вернадский-Браун», 1999, стр. 95.
- Spaun N.A., 34 конференция по наукам о планетах и Луне, LPI, Хьюстон, 2003.
- Spaun N.A., Результаты 30 микросимпозиума «Вернадский-Браун», 1999, стр. 107-108.
- Spencer, J.R., 1997, The Pele plume (Io): Observations with the Hubble Space Telescope. Geophys. Res. Lett. 24, 2471-2474.
- Turtle E.P., Jaeger W.L., Keszthelyi L.P., McEwen A.S., 32 конференция по наукам о планетах и Луне, LPI, Хьюстон, 2001.
- Wilson L., Head J.W. 29 конференция по наукам о планетах и Луне, LPI, Хьюстон, 1998.
- Wilson R.R., Schenk P.M., 2003, 34 конференция по наукам о планетах и Луне, LPI, Хьюстон, 2003 http://www.lpi.usra.edu/meetings/lpsc2003/
- www.nasa.gov
- www.astronet.ru
- http://www.astro.cornell.edu
- http://www.lpi.usra.edu
- http://www.astrolab.ru/
- 353.
Рельеф спутников Юпитера
-
- 354.
Реферат для выпускных экзаменов
Информация пополнение в коллекции 12.01.2009 всё вышеизложенное, несомненно, свидетельствует, что проблемы Тунгусского метеорита - это серьёзнейшие междисциплинарные проблемы, разрешение которых имело и будет иметь важное значение для развития фундаментальной науки. Однако, как написал в одной из своих последних статей о Тунгусском метеорите Н. Васильев (Земля и Вселенная 1989. -№3), «для того чтобы обеспечить реализацию этой перспективы, нужны условия, и прежде всего сохранение объекта исследования, которым является район падения Тунгусского метеорита. Время, к сожалению, течет быстро. Следы и свидетели катастрофы исчезают. Нужно сделать всё возможное для того, чтобы сохранить район падения Тунгусского космического тела, сохранить и само существование которого оказалось под серьёзной угрозой из-за возможности промышленного освоения. Принятое в 1987г. решение об объявлении этого района государственным заказником отодвинуло, но не ликвидировало угрозу. Радикальным решением проблемы может быть только объявление его государственным заповедником, чтобы сохранить этот уникальный район не только для советской, но и мировой науки.
- 354.
Реферат для выпускных экзаменов
-
- 355.
Рождение Вселенной
Информация пополнение в коллекции 30.11.2010 Космология, строение Вселенной, прошлое, настоящее и будущее нашего мира - эти вопросы всегда занимали лучшие умы человечества. И составители Ветхого Завета, и древние философы из разных уголков света предлагали свои, порой эволюционные, варианты космологии, основанные на временной шкале, и описывали некую последовательность событий в образах своего времени. Представления наших предков не так уж кардинально отличаются от современных моделей, опирающихся на данные современной наблюдательной астрономии, в первую очередь внеземной. В 1972 г. Киржниц и Линде пришли к выводу, что в ранней Вселенной происходили своеобразные фазовые переходы, когда различия между разными типами взаимодействий вдруг исчезали: сильные и электрослабые взаимодействия сливались в одну единую силу. (Единая теория слабого и электромагнитного взаимодействий, осуществляемых кварками и лептонами посредством обмена безмассовыми фотонами (электромагнитное взаимодействие) и тяжелыми промежуточными векторными бозонами (слабое взаимодействие), создана в конце 1960-х гг. Стивеном Вайнбергом, Шелдоном Глэшоу и Абдусом Саламом.) В дальнейшем Линде сосредоточился на изучении процессов на еще более ранних стадиях развития Вселенной, в первые 10-30 с после ее рождения. Раньше казалось маловероятным, что до нас может дойти эхо событий, происходивших в первые миллисекунды рождения Вселенной. Однако в последние годы современные методы астрономических наблюдений позволили заглянуть в далекое прошлое. [3, c. 32-43]
- 355.
Рождение Вселенной
-
- 356.
Рождение звезд
Информация пополнение в коллекции 09.12.2008 Значение газово-пылевых комплексов в современной астрофизике очень велико. Дело в том, что уже давно астрономы, в значительной степени интуитивно, связывали образования конденсации в межзвездной среде с важнейшим процессом образования звезд из "диффузной" сравнительно разряженной газово-пылевой среды. Какие же основания существуют для предположения о связи между газово-пылевыми комплексами и процессом звездообразоания? Прежде всего следует подчеркнуть, что уже по крайней мере с сороковых годов нашего столетия астрономам ясно, что звезды в Галактике должны непрерывно (то есть буквально "на наших глазах") образовываться из какой-то качественно другой субстанции. Дело в том, что к 1939 году было установлено, что источником звездной энергии является происходящий в недрах звезд термоядерный синтез. Грубо говоря, подавляющие большинство звезд излучают потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Так как масса одного протона (в атомных единицах) равна 1,0081, а масса ядра гелия (альфа-частицы) равна 4,0039, то избыток массы, равный 0,007 атомной единицы на протон, должен выделиться как энергия. Тем самым определяется запас ядерной энергии в звезде, которая постоянно тратится на излучение. В самом благоприятном случае чисто водородной звезды запаса ядерной энергии хватит не более, чем на 100 миллионов лет, в то время как в реальных условиях эволюции время жизни звезды оказывается на порядок меньше этой явно завышенной оценки. Но десяток миллионов лет - ничтожный срок для эволюции нашей Галактики, возраст которой никак не меньше чем 10 миллиардов лет. Возраст массивных звезд уже соизмерим с возрастом человечества на Земле! Значит звезды (по крайней мере, массивные с высокой светимостью) никак не могут быть в Галактике "изначально", то есть с момента ее образования. Оказывается, что ежегодно в Галактике "умирает" по меньшей мере одна звезда. Значит, для того, чтобы "звездное племя" не "выродилось", необходимо, чтобы столько же звезд в среднем образовывалось в нашей Галактике каждый год. Для того, чтобы в течении длительного времени (исчисляемыми миллиардами лет) Галактика сохраняла бы неизменными свои основные особенности (например, распределение звезд по классам, или, что практически одно и тоже, по спектральным классам), необходимо, чтобы в ней автоматически поддерживалось динамическое равновесие между рождающимися и "гибнущими" звездами. В этом отношении Галактика похожа на первобытный лес, состоящий из деревьев различных видов и возрастов, причем возраст деревьев гораздо меньше возраста леса. Имеется, правда, одно важное различие между Галактикой и лесом. В Галактике время жизни звезд с массой меньше солнечной превышает ее возраст. Поэтому следует ожидать постепенного увеличения числа звезд со сравнительно небольшой массой, так как они пока еще "не успели" умереть, а рождаться продолжают. Но для более массивных звезд упомянутое выше динамическое равновесие неизбежно должно выполняться.
- 356.
Рождение звезд
-
- 357.
Розміри і структура нашої Галактики
Информация пополнение в коллекции 19.11.2010 Природа сама придумала для астрофізиків гігантський всехвильовий космічний телескоп, заснований на ефекті гравітаційного лінзування. Це явище, засноване на загальній теорії відносності, було теоретично передбачене в тридцяті роки ХХ століття Альбертом Ейнштейном. Якщо на шляху світла від далекого джерела до нас є який-небудь масивний об'єкт, наприклад типу, то промені світла в її полі тяжіння будуть викривлятися, і галактика виступить у ролі лінзи, що збирає світло. Результат, зокрема, може полягати в появі кратного (подвійного, потрійного і т.д.) Зображення одного і того ж об'єкта, або посилення його яскравості, якщо Земля виявилася на потрібній відстані від гравітаційної лінзи. Перша гравітаційна лінза була відкрита в 1979 р. Це був квазар. Зараз відомо більше 25 гравітаційних лінз. Серед гравітаційних лінз зустрічаються утворення різної форми, а найбільш ефектними виглядають хрести і кільця Ейнштейна. Природа ж прихованої маси у Всесвіті залишається незрозумілою до теперішнього часу.
- 357.
Розміри і структура нашої Галактики
-
- 358.
Самолетные связные радиостанции
Курсовой проект пополнение в коллекции 09.12.2008 В авиационных радиоприемниках используются различные схемы подавителей шумов (ПШ), обеспечивающие запирание низкочастотного тракта при отсутствии полезного сигнала или при слишком низком его уровне. Принцип функционирования ПШ можно рассмотреть на примере PC «Ядро» (рис. 10). Кроме элементов схемы НШ, на рис. 10 показаны относящиеся к основному тракту радиоприема амплитудный детектор АД и УНЧ2. Сигналы с выхода амплитудного детектора через УНЧ1 подводятся к фильтрам низких ФНЧ и высоких ФВЧ частот, пропускающим полосы частот 200...800 и 800... 1400 Гц соответственно. Полоса 200...800 Гц содержит основную энергию телефонного сообщения, в полосу 800... 1400 Гц попадают в основном составляющие спектра шумов. Выходные колебания ФНЧ и ФВЧ выпрямляются детекторами Д1 и Д2, и постоянные напряжения, пропорциональные средним значениям амплитуд звукового сигнала и шума, поступают в схему сравнения их уровней ССУ, которая формирует напряжение, управляющее ключом подавителя шума. Логика работы ССУ такова. Если отношение уровней сигнала к шуму превосходит 3, ключ никакого влияния на УНЧ2 не оказывает. Если же сигнал превышает шум менее чем втрое, ключ ПШ КПШ формирует сигнал, запирающий УНЧ2, и на выход приемника ни сигнал, ни шум не проникают. Таким образом, ПШ обеспечивает нормальное функционирование приемника при достаточно высоком уровне сигнала. При низком уровне сигнала, когда разборчивость речи сильно понижается и чувствуется мешающее действие шума, утомляющего оператора, приемник запирается.
- 358.
Самолетные связные радиостанции
-
- 359.
Самолеты
Информация пополнение в коллекции 12.01.2009 - Числовая последовательность - это функция, заданная на множестве натуральных чисел и принимающая дискретные значения (не непрерывные).{yn} - ограниченная, если существует такое M (M>0), что для всякого n выполняется нер-во: -M<=yn<=M. {yn}- возрастающая, если для всех n: yn+1>=yn. Последовательность монотонна если она строго возрастает или убывает.
- Число А называется пределом {yn} при n стремящемся к бесконечности, если для всякого Е>0, как угодно малого, существует такой номер N, зависящий от Е (N=N(E)), что для всех n>N будет выполняться нер-во |yn-A|<=E. Достаточное условие: Если {yn} возрастает (убывает) и ограничена сверху (снизу), то последовательность имеет предел.
- Число А называется пределом f(x) при x, стремящемся к x0, если для всякого сколь угодно малого числа Е существует б=б(Е)>0, что выполняется нер-во: |f(x)-A|<=E, для всякого х принадлежащего: х0-б<=x<=x0+б. f(x) - бесконечно малая, если lim f(x)=0, при х стремящемся к х0. f(x) - бесконечно большая, если lim f(x)=бесконечности, при х стремящемся к х0. f(x) - ограничена в данном интервале, если существует такое число М (М>0), что при всех значениях х, принадлежащих этому интервалу, выполняется |f(x)|<=M. Функция называется ограниченной при х стремящемся к х0, если в некоторой окрестности х0 она ограничена.
- Пусть l, b - б.м. в некотором процессе и lim l/b=C 1)C не равно 0 и бесконечности => l, b - одного порядка малости. 2) С=0 => l - более высокого порядка малости. 3) С=бесконечности => b - более высокого порядка малости. Сумма двух, трех и вообще конечного числа б.м. величин есть величина б.м. Произведение б.м. на ограниченную функцию есть б.м. Частное от деления б.м. на функцию, предел которой отличен от 0, есть величина б.м.
- Предел суммы двух слагаемых = сумме пределов этих слагаемых. Предел произведения двух множителей = произведению пределов этих множителей. Предел частного = частному от деления пределов, если только предел знаменателя не 0.
- Если функция имеет предел, то её можно представить как сумму постоянной, равной её пределу и б.м. величины. Если функцию можно представить как сумму постоянной и б.м. величины, то постоянное слагаемое есть предел функции. Пусть есть f(x) и g(x) и существуют их пределы при х стремящемся к х0, равные соответственно А и В, и f(x)>g(x) в окрестности х0 => A>=B => lim f(x)>=lim g(x).
- Если значения f(x) заключены между соответствующими значениями F(x) и Ф(х), стремящихся к одному и тому же пределу А ( при х стремящемся к х0), то f(x) при х стремящемся к х0 также имеет предел =А. 1-ый замечательный предел: lim sinx/x=1 при х стремящемся к 0.
- 2-ой замечательный предел: lim(1+1/n)n=e, при х стремящемся к бесконечности. е=2,718…
- Функция y=f(x) называется непрерывной в точке х0, если эта функция определена в какой-нибудь окрестности точки х0 и если lim дельта y=0, при дельта х стремящемся к нулю. Дельта у=f(x+x0)-f(x0).
- Пусть f(x) и g(x) непрерывны в точке а, тогда их сумма (произведение) (частное, если g(a) не =0) тоже непрерывны в точке а.
- Сложная функция - функция от функции. Сложная функция, состоящая из простых непрерывна, если непрерывны все простые функции. Функция непрерывная в замкнутом интервале, хотя бы в одной точке интервала принимает наибольшее значение и хотя бы в одной наименьшее. Функция, непрерывная в замкнутом интервале и принимающая на концах этого интервала значения разных знаков, хотя бы один раз обращается в ноль внутри интервала.
- Если в какой-либо точке х0 функция не является непрерывной, то точка х0 называется точкой разрыва. Пусть х стремиться к х0, оставаясь все время слева от х0, т.е. будучи меньше х0, и если при этом условии значение функции f(x) стремится к пределу, то он называется левым пределом (правый аналогично). Точкой разрыва 1-го рода f(x) называется такая точка х0, в которой f(x) имеет левый и правый пределы, не равные между собой.(все остальные точки разрыва- 2-го рода).
- Производной данной функции называется предел отношения приращения функции к приращению независимой переменной при произвольном стремление этого приращения к нулю: f'(x)=lim(f(x+дельта x)-f(x))/дельта х, при х стремящемся к 0. Производная характеризует скорость изменения какой-нибудь величины. Значение f'(x) равно угловому коэффициенту касательной к графику функции y=f(x) в точке с абсциссой х0.
- Производная суммы конечного числа функций = сумме производных слагаемых. Производная произведения двух функций равна сумме произведений производной 1-ой функции на 2-ую и производной 2-ой на 1-ую. Производная частного 2-х функций = дроби, знаменатель которой = квадрату делителя, а числитель - разности между производной делимого на делитель и произведением делимого на производную делителя.
- Производная сложной функции равна производной заданной функции по промежуточному аргументу, умноженный на производную этого аргумента по независимой переменной. Задание функциональной зависимости между двумя переменными, состоящее в том, что обе переменные определяются каждая в отдельности как функция одной и той же вспомогательной переменной, называется параметрическим.
- Дифференциал функции называется величина, пропорциональная бесконечно малому приращению аргумента дельта х и отличающаяся от соответствующего приращения функции на бесконечно малую величину более высокого порядка чем дельта х (dy=f'(x)dx). Дифференциал dy функции y=f(x) в точке х изображается приращением ординаты точки касательной, проведенной к линии y=f(x) в соответствующей ее точке (x,f(x)). Дифференциал функции y=f(u) сохраняет одно и тоже выражение независимо от того, является ли аргумент u независимой переменной или функцией от независимой переменной.
- Касательной к графику f(x) в точке называется предельное положение прямой, проходящую через данную точку, когда эта точка стремиться слиться с графиком f(x). Если значение производной от функции y=f(x) при х=х0 равно f(x0), то прямая, проведенная через данную точку с угловым коэфициентом, равным f'(x), является касательной к графику функции в данной точке.(y-y0=f'(x0)(x-x0)) . Нормалью к линии ее данной точке называется прямая перпендикулярная касательной. (y-y0=-1/f'(x0)(x-x0)).
- Функция y=f(x) называется не дифференцируемой в точке х, если она не имеет в этой точке дифференциал.
- Пусть f(x) непрерывна на замкнутом интервале [a,b] и дифференцируема во всех его точках и на концах отрезка она принимает значения f(a)=f(b), тогда существует такая точка С, что a<C<b и f'(C)=0. На линии f(x), где f(x) удовлетворяет условиям теоремы Ролля найдется точка касательная в которой || Ox.
- Если f(x) непрерывна в замкнутом интервале [a,b] и дифференцируема во всех его точках, то в этом интервале существует хотя бы одно значение х=с для которого: f(a)-f(b)/b-a=f'(c). Если выполняются условия Теоремы Лагранжа, то касательная в данной точке будет || хорде связывающей точки интервала.
- Т. Коши: пусть f(x) непрерывна на [a,b] и дифференцируема на (а,b);g(x) - удовлетворяет тем же условиям и g'(x) не =0 для всех х на этом промежутке, тогда существует точка С принадлежащая (a,b), что f(b)-f(a)/g(b)-g(a)=f'(c)/g'(c). Т. Лапиталя: Пусть функции f(x) и g(x) при х стремящемся а (или к бесконечности) совместно стремятся к 0 или бесконечности. Если отношение их производных имеет предел, то отношение самих функций так же имее предел = отношению произодных.
- Т. Тейлора: Если f(x) обладает в замкнутом промежутке (a,b) производными до n+1-го порядка включительно, то f(b)=f(a)+f'(a)/1!*(b-a)+f''(a)/2!*(b-a)2+…+f(n)(a)/n!*(b-a)n+f(n+1)(c)/(n+1)!(b-a)n+1, где с - некоторое число лежащее между а и b. Rn = fn+1(c)/(n+1)!*(b-a)n+1 - остаточный член в форме Тейлора.
- Формула Маклорена - формула Тейлора при а=0. f(x)=f(0)+f'(0)/1!*x+…+fn(0)/n!*xn+f(n+1)(C)/(n+1)!*xn+1.
- Необходимое условие: Если f(x) в интервале возрастает (убывает), то ее производная f'(x)>=0 (f'(x)<=0). Достаточное условие: Если f'(x) от f(x) всюду на интервале положительна (отрицательна), f(x) в этом интервале возрастает (убывает).
- Точка х=х0 называется глобальным минимумом (максимумом) f(x) на множестве m, если для всех х, принадлежащих m f(x)>f(x0) (f(x)<f(x0)). Точка х=х0 называется локальным минимумом функции f(x) если существует б-окрестность точки х0, что для всех х кроме х0 из этой окрестности будет выполнено f(x0+дельта х)>x0.Необходимое условие: пусть функция f(x) дифференцирована в точке х0 и ее окрестности тогда f'(x)=0.
- Достаточное условие (1-го порядка): Точка х0 является точкой экстремума функции f(x), если производная f(x) при переходе х через х0 меняет знак.
- Точки, где 1-ая производная обращается в 0 называют стационарными точками. Достаточное условие 2-го порядка: пусть точка х0 - стационарна и существует f''(x0) - непрерывна, тогда если f''(x0)>0 => x0- точка минимума.(f''(x0)>0 => x0- точка максимума.
- Дуга называется выпуклой, если она пересекается с любой своей секущей не более чем в двух точках. Точкой перегиба называется такая точка линии, которая отделяет выпуклую дугу от вогнутой. Если х0 - абсцисса точки перегиба, то либо f ''(x0)=0, либо не существует.
- Если f ''(x) всюду в интервале отрицательна (положительна), то дуга линии y=f(x), соответствующая этому интервалу, выпуклая (вогнутая).
- Прямая линия называется асимптотой графика функции, если расстояние точки графика от нашей прямой стремится к нулю при неограниченном удалении этой точки от начала координат. Вертикальные асимптоты: если lim f(x)=бесконечности при х стремящемся к х0, то линия y=f(x) имеет асимптоту х=х0. Наклонные асимптоты: Если f(x)/x при х стремящемся к бесконечности стремиться к конечному пределу а и если f(x)-ax при х стремящемся к бесконечности стремиться к конечному пределу b, то линия y=f(x) имеет асимптоту y=ax+b.
- 359.
Самолеты
-
- 360.
Сатурн и его спутники
Информация пополнение в коллекции 09.12.2008 Эти предложения подтвердились. Еще при подлете «Пионера-11» к Сатурну его приборы зарегистрировали в около планетном пространстве образования, типичные для планеты, обладающей ярко выраженным магнитным полем: головную ударную волну, границу магнитосферы (магнитопаузу), радиационные пояса (Земля и Вселенная, 1980, N2, с.22-25 - Ред.). В целом магнитосфера Сатурна весьма сходна с земной, но, конечно, значительно больше по размерам. Внешний радиус магнитосферы Сатурна в подсолнечной точке составляет 23 экваториальных радиуса планеты, а расстояние до ударной волны - 26 радиусов. Для сравнения можно напомнить, что внешний радиус земной магнитосферы в подсолнечной точке - около 10 земных радиусов. Так что даже по относительным размерам магнитосфера Сатурна превосходит земную более чем вдвое. Радиационные пояса Сатурна настолько обширны, что охватывают не только кольца, но и орбиты некоторых внутренних спутников планеты. Как и ожидалось, во внутренней части радиационных поясов, которая «перегорожена» кольцами Сатурна, концентрация заряженных частиц значительно меньше. Причину этого легко понять, если вспомнить, что в радиационных поясах частицы совершают колебательные движения примерно в меридиональном направлении, каждый раз пересекая экватор. Но у Сатурна в плоскости экватора располагаются кольца: они поглощают почти все частицы, стремящиеся пройти сквозь них. В результате внутренняя часть радиационных поясов, которая в отсутствие колец была бы в системе Сатурна наиболее интенсивным источником радиоизлучения, оказывается ослабленной. Тем не менее «Вояджер-1», приблизившись к Сатурну, все же обнаружил нетепловое радиоизлучение его радиационных поясов.
- 360.
Сатурн и его спутники