Авиация, Астрономия, Космонавтика

  • 321. Проектирование твердотопливного ракетного двигателя третьей ступени трехступенчатой баллистической ракеты
    Курсовой проект пополнение в коллекции 29.11.2009

    Ракетные двигатели твердого топлива находят широкое применение во многих областях авиационно-космической техники. По энергетическим характеристикам они вполне приблизились к ЖРД, превосходя их по многим параметрам. Они отличаются простотой конструкции и высокой надежностью, что объясняется отсутствием топливных баков, систем подачи и регулирования расхода топлива. РДТТ способны создавать большой суммарный импульс тяги за короткое время, обеспечивать длительный срок хранения в снаряженном виде и, следовательно, постоянную готовность к пуску при незначительном времени на его подготовку. Они просты и недороги в эксплуатации, то есть обладают высокой эксплуатационной технологичностью. При обслуживании и хранении ракет с РДТТ не возникает проблем, связанных с коррозией, токсичностью и испарением топлива. Стоимость разработки и изготовления РДТТ значительно ниже ЖРД (однако стоимость твердого топлива часто оказывается выше стоимости жидкого топлива).

  • 322. Происхождение земли
    Информация пополнение в коллекции 12.01.2009

    Одним из результатов разогревания внутренних слоев явилось начало вулканической деятельности и горообразования. Они привели не только к изменению формы поверхности, но и к громадным изменениям в строении внутренних слоев. В течение этого времени различные газы, которые вошли в состав планеты, когда она образовалась в результате аккреции, начали искать путь к поверхности. Среди них были углекислый газ, метан, водяной пар и газы, содержащие серу. Газы должны были течь к поверхности особенно интенсивно в период перестройки и дифференциации. Они оставались на поверхности, так как сила тяжести на Земле была достаточной для того, чтобы помешать всем газам, кроме самых легких (водорода и гелия) , уйти в окружающее пространство. Температура в то время должна была быть достаточно низкой и допускала конденсацию воды. Растворяясь в воде, другие газы вступали в химические реакции с такими элементами, как кальций и магний, которые выщелачивались из горных пород, когда выпадение дождей начало приводить к выветриванию. Если бы температура была выше, наличие плотной атмосферы с большим содержанием углекислого газа привело бы к установлению так называемого «парникового эффекта», который, по-видимому, возник на Венере, что привело к образованию горячей облачной атмосферы этой Планеты (с^. «Венера» Э. и Л.Янгов).

  • 323. Происхождение Земли
    Информация пополнение в коллекции 15.08.2010
  • 324. Происхождение и развитие галактики
    Информация пополнение в коллекции 12.01.2009

    Таким образом, из простых законов физики следует ожидать, что может иметь место единственный и закономерный процесс эволюции газово-пылевых комплексов сначала в протозвезды, а потом и в звезды. Однако возможность - это еще не есть действительность. Первейшей задачей наблюдательной астрономии является, во-первых, изучить реальные облака межзвездной среды и проанализировать, способны ли они сжиматься под действием собственной гравитации. Для этого надо знать их размеры, плотность и температуру. Во-вторых, очень важно получить дополнительные аргументы в пользу "генетической близости облаков и звезд (например, тонкие детали их химического и даже изотопного состава, генетическая связь звезд и облаков и прочее). В-третьих, очень важно получить из наблюдений неопровержимые свидетельства существования самых ранних этапов развития протозвезд (например, вспышки инфракрасного излучения в конце стадии свободного падения). Кроме того, здесь могут наблюдаться, и, по-видимому, наблюдаются совершенно неожиданные явления. Наконец, следует детально изучать протозвезды. Но для этого прежде всего надо уметь отличать их от "нормальных" звезд.

  • 325. Происхождение и развитие солнечной системы
    Информация пополнение в коллекции 09.12.2008

    Если сравнивать кольца различных планет-гигантов, они будут иметь и различия. Возможно различие их химического состава, если различен состав облаков планет-гигантов. Следует отметить, что в состав спутничков колец планет-гигантов входит не только ледяная компонента облаков, но и пыль космических осадков. Необходимо отметить так же, что после окончания галактической зимы вещество спутничков колец пополняется за счет ледяной компоненты спутников планет, которые теряют ее при разогреве под воздействием приливного трения. Если бы не происходило это пополнение спутничков колец ледяной компонентой ближних спутников и даже пылью с поверхности маленьких спутничков, то, возможно, кольца уже исчезли бы или, по крайней мере, были бы менее плотными. Возможно, у Нептуна будут обнаружены уникальные кольца, которые обращаются, быть может, вокруг Нептуна в обратную сторону, поскольку они могут образовываться Тритоном. А может быть, в обратную сторону обращаются только несколько внешних разряженных колечек, а внутренние, тоже разряженные, обращаются в прямом направлении, т. к. они могли образоваться из атмосферы. Но, поскольку Нептун вращается медленно, у него может и не быть колец с прямым обращением. Плотность колец должна быть тем больше, чем более массивной является атмосфера планеты и чем больше является ее скорость вращения. Низкая плотность колец Юпитера может быть объяснена близостью Солнца, которое способствует сухому испарению (сублимации) вещества спутничков и его диссипации в межпланетное пространство вместе с потоком диссипирующих водорода и гелия. Ведь кольца планет-гигантов, прежде всего кольца Юпитера, ближе всего расположенные к Солнцу, после окончания галактической зимы ничем не защищены от солнечных лучей, в отличие, например, от поверхности планет, которые защищены облачным экраном. Да и образоваться спутнички колец Юпитера из-за близости к Солнцу могли, по-видимому, в меньшем количестве и с меньшими размерами и массой. Кроме того, они, возможно, под влиянием солнечного излучения уменьшаются до сих пор на протяжении всего галактического лета. Низкая плотность колец Урана может быть объяснена тем, что в отличие от других планет-гигантов он переодически поворачивается к Солнцу таким образом, что его кольца обращены к Солнцу не ребром и не под небольшим углом, а всей поверхностью, так что солнечные лучи падают на кольца Урана почти перпендикулярно. В результате на единицу площади колец Урана приходится солнечной лучистой энергии несколько больше, чем у кольца Сатурна. Поэтому ледяная компонента колец Урана, как и Юпитера, подвергаясь более сильному нагреву солнечными лучами, чем у Сатурна, постепенно диссипировала посредством сублимации в межпланетное пространство. И в кольцах Урана и Юпитера почти не осталось ледяной компоненты, но сохраняется еще силикатная компонента, которая, как полагают некоторые ученые, пополняется за счет небольших спутников, например, Амальтеи у Юпитера, а так же тех спутников, которые расположены между кольцами диска.

  • 326. Происхождение Солнечной системы
    Информация пополнение в коллекции 09.12.2008

    С точки зрения гипотезы Лапласа, это совершенно непонятно. В эпоху, когда от первоначальной, быстро вращающейся туманности отделилось кольцо, слои туманности, из которых потом сконденсировалось Солнце, имели (на единицу массы) примерно такой же момент, как вещество отделившегося кольца (так как угловые скорости кольца и оставшихся частей были примерно одинаковы), так как масса последнего была значительно меньше основной туманности (“протосолнца”), то полный момент количества движения кольца должен быть много меньше, чем у “протосолнца”. В гипотезе Лапласа отсутствует какой-либо механизм передачи момента от “протосолнца” к кольцу. Поэтому в течение всей дальнейшей эволюции момент количества движения “протосолнца”, а затем и Солнца должен быть много больше, чем у колец и образовавшихся из них планет. Но этот вывод противоречит с фактическим распределением количества движения между Солнцем и планетами.

  • 327. Происхождение Солнечной системы
    Информация пополнение в коллекции 20.06.2011

    И вот туманность приобрела совсем другой вид. В середине величаво вращается огромное темное, чуть сплющенное облако, а вокруг него на разных расстояниях плывут по круговым орбитам, расположенным примерно в одной плоскости, оторвавшиеся от него небольшие "облака-спутники". Последим за центральным облаком. Оно продолжает уплотняться. Но теперь с силой тяготения начинает бороться новая сила газового давления. Ведь в середине облака накапливается все больше частиц вещества. В центре повышаются температура и давление. Сначала там становится тепло, потом жарко. Затем облако перестало сжиматься. Могучая сила возросшего от нагрева газового давления остановила работу тяготения. В глубине черной тучи стали слабо просвечивать рвущиеся наружу клубы тусклого красного пламени. Они всё ближе и ярче. Однако, вырвавшись наружу, горячий газ ослабил противодействие тяготению. Облако снова стало сжиматься. Температура в его центре опять начала расти. Она дошла уже до сотен тысяч градусов! В этих условиях вещество не может быть даже газообразным. Атомы разваливаются на свои части. Вещество переходит в состояние плазмы. Но и плазма - бешеная толчея атомных ядер и электронов - не может выносить нагрев до бесконечности. Когда её температура поднимется выше десяти миллионов градусов, она как бы "воспламеняется". Удары частиц друг о друга становятся так сильны, что ядра атомов водорода уже не отскакивают друг от друга, как мячики, а врезаются, вдавливаются друг в друга и сливаются друг с другом. Начинается "ядерная реакция". Из каждых четырех ядер атомов водорода образуется одно ядро гелия. При этом выделяется огромная энергия. Плазма рвется наружу. С чудовищной силой она давит изнутри на внешние слои шара и приостанавливает их падение к центру. Установилось равновесие. Плазме не удается разорвать шар, разбросать его обрывки в стороны. А тяготению не удается сломить давление плазмы и продолжить сжимание шара. Ослепительно светящийся бело-желтым светом шар перешел в устойчивую стадию. Он стал звездой. Стал нашим Солнцем! Теперь оно будет миллиардами лет, не меняя размера, не охлаждаясь и не перегреваясь, светить одинаково ярким бело-желтым светом. Пока внутри не выгорит весь водород. А когда он весь превратится в гелий, исчезнет "подпорка" внутри Солнца, оно сожмется. От этого температура в его недрах снова повысится. Теперь уже до сотен миллионов градусов. Но тогда "воспламенится" гелий, превращаясь в более тяжелые элементы. И сжатие снова прекратится. Во многих звездах, образовавшихся из более крупных сгустков туманностей, ядерное горение проходит слишком бурно. Газовое давление оказывается намного сильнее тяготения. Оно раздувает звезду, рвет её в клочья, разбрасывая во все стороны. Эти грандиозные взрывы в звездном мире иногда наблюдаются с Земли и называются вспышками "сверхновых звезд". В результате взрыва звезда рассеивается в межзвездном пространстве, обогащая его тяжелыми элементами. Это основной источник той таинственной, жизненно важной примеси, о которой мы говорили раньше.

  • 328. Происхождение солнечной системы (гипотеза О. Ю. Шмидта)
    Информация пополнение в коллекции 12.01.2009

    Такое распределение МКД между Солнцем и планетами связано с медленным вращением Солнца и огромными размерами планетной системы - её поперечник в несколько тысяч раз больше поперечника Солнца. МКД планеты приобрели в процессе своего образования: он перешел к ним из того вещества, из которого они образовались. Планеты делятся на две группы, отличающиеся по массе, химическому составу (это проявляется в различиях их плотности), скорости вращения и количеству спутников. Четыре планеты, ближайшие к Солнцу, планеты Земной группы, невелики, состоят из плотного каменистого вещества и металлов. Планеты-гиганты- Юпитер, Сатурн, Уран и Нептун - гораздо массивнее, состоят в основном из лёгких веществ и поэтому, несмотря на огромное давление в их недрах, имеют малую плотность. У Юпитера и Сатурна главную долю их массы составляют водород и гелий. В них содержится так же до 20% веществ и легких соединений кислорода, углерода и азота, способных при низких температурах концентрироваться в лед. Недра планет и некоторых спутников находятся в раскалённом состоянии. У планет земной группы и спутников вследствие малой теплопроводности наружных слоёв внутреннее тепло очень медленно просачивается наружу и не оказывает заметного влияния на температуру поверхности. У планет-гигантов конвекция в их недрах приводит к заметному потоку тепла из недр, превосходящему поток, получаемый им от Солнца. Венера, Земля и Марс обладают атмосферами, состоящими из газов, выделившихся из их недр. У планет-гигантов атмосферы представляют собой непосредственное продолжение их недр: эти планеты не имеют твердой или жидкой поверхности. При погружении внутрь атмосферные газы постепенно переходят в конденсированное состояние. Девятую планету-Плутон, по - видимому, нельзя отнести ни к одной из двух групп. По химическому составу он близок к группе планет-гигантов, а по размерам к земной группе. Ядра комет по своему химическому составу родственны планетам гигантам: они состоят из водяного льда и льдов различных газов с примесью каменистых веществ. Почти все малые планеты по своему современному составу относятся к каменистым планетам земной группы. Сравнительно недавно открытый Хирон, движущийся в основном между орбитами Сатурна и Урана, вероятно, подобен ледяным ядрам комет и небольшим спутникам далёких от Солнца планет. Обломки малых планет, образующиеся при их столкновении друг с другом, иногда выпадают на Землю в виде метеоритов. У малых планет, именно вследствие их малых размеров, недра подогревались значительно меньше, чем у планет земной группы, и поэтому их вещество зачастую претерпело лишь небольшие изменения со времени их образования. Измерения возраста метеоритов (по содержанию радиоактивных элементов и продуктов их распада) показали, что они, а следовательно вся Солнечная система, существует около 5 миллиардов лет. Этот возраст Солнечной системы находится в согласии с измерениями древнейших земных и лунных образцов.

  • 329. Происхождение Солнечной системы, её состав
    Информация пополнение в коллекции 06.05.2012

    Система спутников Сатурна. "><http://www.astrogalaxy.ru/foto001/foto0197.jpg>.%20%d0%9e%d0%b3%d1%80%d0%be%d0%bc%d0%bd%d1%8b%d0%b9%20%d1%83%d0%b4%d0%b0%d1%80%d0%bd%d1%8b%d0%b9%20%d0%ba%d1%80%d0%b0%d1%82%d0%b5%d1%80%20%d0%93%d0%b5%d1%80%d1%88%d0%b5%d0%bb%d1%8c%20%d0%b8%d0%bc%d0%b5%d0%b5%d1%82%20%d0%be%d0%ba%d0%be%d0%bb%d0%be%20130%20%d0%ba%d0%bc%20%d0%b2%20%d0%b4%d0%b8%d0%b0%d0%bc%d0%b5%d1%82%d1%80%d0%b5.%20%d0%a1%d0%bf%d1%83%d1%82%d0%bd%d0%b8%d0%ba%d0%b8%20%d0%a1%d0%b0%d1%82%d1%83%d1%80%d0%bd%d0%b0%20(%d0%b8%20%d0%b4%d1%80%d1%83%d0%b3%d0%b8%d1%85%20%d0%bf%d0%bb%d0%b0%d0%bd%d0%b5%d1%82-%d0%b3%d0%b8%d0%b3%d0%b0%d0%bd%d1%82%d0%be%d0%b2)%20%d0%bc%d0%be%d0%b6%d0%bd%d0%be%20%d1%80%d0%b0%d0%b7%d0%b4%d0%b5%d0%bb%d0%b8%d1%82%d1%8c%20%d0%bd%d0%b0%20%d0%b4%d0%b2%d0%b5%20%d0%b3%d1%80%d1%83%d0%bf%d0%bf%d1%8b%20-%20%d1%80%d0%b5%d0%b3%d1%83%d0%bb%d1%8f%d1%80%d0%bd%d1%8b%d0%b5%20%d0%b8%20%d0%b8%d1%80%d1%80%d0%b5%d0%b3%d1%83%d0%bb%d1%8f%d1%80%d0%bd%d1%8b%d0%b5.%20%d0%a0%d0%b5%d0%b3%d1%83%d0%bb%d1%8f%d1%80%d0%bd%d1%8b%d0%b5%20%d1%81%d0%bf%d1%83%d1%82%d0%bd%d0%b8%d0%ba%d0%b8%20%d0%b4%d0%b2%d0%b8%d0%b6%d1%83%d1%82%d1%81%d1%8f%20%d0%bf%d0%be%20%d0%bf%d0%be%d1%87%d1%82%d0%b8%20%d0%ba%d1%80%d1%83%d0%b3%d0%be%d0%b2%d1%8b%d0%bc%20%d0%be%d1%80%d0%b1%d0%b8%d1%82%d0%b0%d0%bc,%20%d0%bb%d0%b5%d0%b6%d0%b0%d1%89%d0%b8%d0%bc%20%d0%bd%d0%b5%d0%b4%d0%b0%d0%bb%d0%b5%d0%ba%d0%be%20%d0%be%d1%82%20%d0%bf%d0%bb%d0%b0%d0%bd%d0%b5%d1%82%d1%8b%20%d0%b2%d0%b1%d0%bb%d0%b8%d0%b7%d0%b8%20%d0%b5%d0%b5%20%d1%8d%d0%ba%d0%b2%d0%b0%d1%82%d0%be%d1%80%d0%b8%d0%b0%d0%bb%d1%8c%d0%bd%d0%be%d0%b9%20%d0%bf%d0%bb%d0%be%d1%81%d0%ba%d0%be%d1%81%d1%82%d0%b8.%20%d0%92%d1%81%d0%b5%20%d1%80%d0%b5%d0%b3%d1%83%d0%bb%d1%8f%d1%80%d0%bd%d1%8b%d0%b5%20%d1%81%d0%bf%d1%83%d1%82%d0%bd%d0%b8%d0%ba%d0%b8%20%d0%be%d0%b1%d1%80%d0%b0%d1%89%d0%b0%d1%8e%d1%82%d1%81%d1%8f%20%d0%b2%20%d0%be%d0%b4%d0%bd%d0%be%d0%bc%20%d0%bd%d0%b0%d0%bf%d1%80%d0%b0%d0%b2%d0%bb%d0%b5%d0%bd%d0%b8%d0%b8%20-%20%d0%b2%20%d0%bd%d0%b0%d0%bf%d1%80%d0%b0%d0%b2%d0%bb%d0%b5%d0%bd%d0%b8%d0%b8%20%d0%b2%d1%80%d0%b0%d1%89%d0%b5%d0%bd%d0%b8%d1%8f%20%d1%81%d0%b0%d0%bc%d0%be%d0%b9%20%d0%bf%d0%bb%d0%b0%d0%bd%d0%b5%d1%82%d1%8b.%20%d0%ad%d1%82%d0%be%20%d1%83%d0%ba%d0%b0%d0%b7%d1%8b%d0%b2%d0%b0%d0%b5%d1%82%20%d0%bd%d0%b0%20%d1%82%d0%be,%20%d1%87%d1%82%d0%be%20%d1%81%d1%84%d0%be%d1%80%d0%bc%d0%b8%d1%80%d0%be%d0%b2%d0%b0%d0%bb%d0%b8%d1%81%d1%8c%20%d1%8d%d1%82%d0%b8%20%d1%81%d0%bf%d1%83%d1%82%d0%bd%d0%b8%d0%ba%d0%b8%20%d0%b2%20%d0%b3%d0%b0%d0%b7%d0%be%d0%bf%d1%8b%d0%bb%d0%b5%d0%b2%d0%be%d0%bc%20%d0%be%d0%b1%d0%bb%d0%b0%d0%ba%d0%b5,%20%d0%be%d0%ba%d1%80%d1%83%d0%b6%d0%b0%d0%b2%d1%88%d0%b5%d0%bc%20%d0%bf%d0%bb%d0%b0%d0%bd%d0%b5%d1%82%d1%83%20%d0%b2%20%d0%bf%d0%b5%d1%80%d0%b8%d0%be%d0%b4%20%d0%b5%d0%b5%20%d1%80%d0%be%d0%b6%d0%b4%d0%b5%d0%bd%d0%b8%d1%8f.%20%d0%92%20%d0%be%d1%82%d0%bb%d0%b8%d1%87%d0%b8%d0%b5%20%d0%be%d1%82%20%d0%bd%d0%b8%d1%85,%20%d0%b8%d1%80%d1%80%d0%b5%d0%b3%d1%83%d0%bb%d1%8f%d1%80%d0%bd%d1%8b%d0%b5%20%d1%81%d0%bf%d1%83%d1%82%d0%bd%d0%b8%d0%ba%d0%b8%20%d0%be%d0%b1%d1%80%d0%b0%d1%89%d0%b0%d1%8e%d1%82%d1%81%d1%8f%20%d0%b4%d0%b0%d0%bb%d0%b5%d0%ba%d0%be%20%d0%be%d1%82%20%d0%bf%d0%bb%d0%b0%d0%bd%d0%b5%d1%82%d1%8b,%20%d0%bf%d0%be%20%d1%85%d0%b0%d0%be%d1%82%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%bc%20%d0%be%d1%80%d0%b1%d0%b8%d1%82%d0%b0%d0%bc,%20%d1%8f%d1%81%d0%bd%d0%be%20%d1%83%d0%ba%d0%b0%d0%b7%d1%8b%d0%b2%d0%b0%d1%8e%d1%89%d0%b8%d0%bc,%20%d1%87%d1%82%d0%be%20%d1%8d%d1%82%d0%b8%20%d1%82%d0%b5%d0%bb%d0%b0%20%d0%b1%d1%8b%d0%bb%d0%b8%20%d0%b7%d0%b0%d1%85%d0%b2%d0%b0%d1%87%d0%b5%d0%bd%d1%8b%20%d0%bf%d0%bb%d0%b0%d0%bd%d0%b5%d1%82%d0%be%d0%b9%20%d1%81%d1%80%d0%b0%d0%b2%d0%bd%d0%b8%d1%82%d0%b5%d0%bb%d1%8c%d0%bd%d0%be%20%d0%bd%d0%b5%d0%b4%d0%b0%d0%b2%d0%bd%d0%be%20%d0%b8%d0%b7%20%d1%87%d0%b8%d1%81%d0%bb%d0%b0%20%d0%bf%d1%80%d0%be%d0%bb%d0%b5%d1%82%d0%b0%d0%b2%d1%88%d0%b8%d1%85%20%d0%bc%d0%b8%d0%bc%d0%be%20%d0%bd%d0%b5%d0%b5%20%d0%b0%d1%81%d1%82%d0%b5%d1%80%d0%be%d0%b8%d0%b4%d0%be%d0%b2%20%d0%b8%d0%bb%d0%b8%20%d1%8f%d0%b4%d0%b5%d1%80%20%d0%ba%d0%be%d0%bc%d0%b5%d1%82.%20">Спутник Мимас <http://www.astrogalaxy.ru/318.html>. Огромный ударный кратер Гершель имеет около 130 км в диаметре. Спутники Сатурна (и других планет-гигантов) можно разделить на две группы - регулярные и иррегулярные. Регулярные спутники движутся по почти круговым орбитам, лежащим недалеко от планеты вблизи ее экваториальной плоскости. Все регулярные спутники обращаются в одном направлении - в направлении вращения самой планеты. Это указывает на то, что сформировались эти спутники в газопылевом облаке, окружавшем планету в период ее рождения. В отличие от них, иррегулярные спутники обращаются далеко от планеты, по хаотическим орбитам, ясно указывающим, что эти тела были захвачены планетой сравнительно недавно из числа пролетавших мимо нее астероидов или ядер комет. "><http://www.astrogalaxy.ru/foto001/foto0198.jpg>

  • 330. Происхождение Солнца
    Информация пополнение в коллекции 12.01.2009

    Между галактиками, обращающимися вокруг общего центра масс, существует огромное количество других небесных тел, хотя их, по-видимому, и меньше, чем в галактиках. Эти небесные тела - звезды, планеты и кометы обращаются, как и галактики, вокруг их общего центра масс по самостоятельным орбитам. Когда они при своем обращении вокруг общего центра погружаются в газово-пылевую среду, они начинают приближаться по спирали, вследствие их торможения в диффузной среде, к центру масс, вокруг которого они обращаются. Но скорость их приближения при этом различна. Больше всех она у более мелких тел, меньше - у крупных. Быстрее всех перемещаются при этом кометы. Вследствие этого кометы догоняют галактики и отдельные самостоятельные звездно-планетные системы. Догоняя их, они либо обгоняют их, либо захватываются ими. При захвате кометы и другие небесные тела межгалактического пространства либо попадают на поверхность крупных небесных тел: звезд и планет, либо переходят на орбиты - вокруг центра галактик или отдельных звездно-планетных систем, становясь их спутниками, учитывая массу Солнца и его расстояние от центра Галактики и ее края, можно предположить, что Солнце превратилось из кометы в планету на периферии Галактики, а не в межгалактическом пространстве. Потом, в процессе ее увеличения, комета превращалась в ледяную планету, планету-гигант и т.д.

  • 331. Просторовий розподіл галактик
    Информация пополнение в коллекции 23.07.2010

    Іще в перші десятиліття XX ст. деякі астрономи, серед яких шведський астроном К.Е. Лундмарк (18891958), вказували на ймовірність існування надскупчення галактик, до якого входить і Галактика. Проте гіпотеза про реальність такої велетенської надсистеми тоді не мала достатньо аргументів. Уважається, що наявність Місцевого надскупчення галактик довів французький астроном Жерар Анрі де Вокулер (19181995) на основі своїх досліджень за 19531956 pp. Він проаналізував видимий розподіл галактик на небесній сфері та звернув увагу на явно виражену концентрацію яскравих галактик уздовж великого кола небесної сфери (велике коло небесної сфери це уявна крива, утворена перетином небесної сфери площиною, котра проходить через око спостерігача). Вокулер пояснив цей факт тим, що існує велетенське сплющене надскупчення галактик, а Місцева група (і Галактика) розміщена на значній віддалі від його центра. Провівши так звані підрахунки галактик, учений установив, що центр даного надскупчення розміщений у напрямку на скупчення галактик у сузір'ї Діви (див. вище). Він дійшов висновку, що скупчення у сузір'ї Діви є якщо не центром, то принаймні одним із основних згущень у центральній частині Місцевої надгалактики. Невдовзі Вокулер опублікував статтю в одному з наукових журналів (Astronomical Journal, vol. 58, ? 30, 1953), де описав всі наявні тоді докази на користь гіпотези про існування Місцевого надскупчення галактик. Однак наведені в згаданій статті аргументи були описовими та якісними. Невдовзі Вокулер детально й кількісно дослідив видимий розподіл яскравих галактик на небесній сфері. На основі такого дослідження Вокулер дійшов висновку, що Місцева надгалактика охоплює тисячі, а то й десятки тисяч галактик, а сильна сплюснутість названої надсистеми вказує на її обертання. Обертання Місцевого надскупчення відбувається навколо центра, який збігається зі скупченням галактик у сузір'ї Діви. Обертання Місцевої надгалактики диференційне, тобто різні її частини обертаються з різною швидкістю: поблизу центра період обертання становить 50 млрд років, а в зовнішніх областях 100200 млрд років. Наша зоряна система теж бере участь у загальному обертанні Місцевого надскупчення галактик.

  • 332. Пространственно-временная метрика, уравнения геодезических. Ньютоново приближение
    Информация пополнение в коллекции 27.06.2010

    Подставив (1.3.8) в (1.2.9) и зная, что произвольная функция можно получить уравнение геодезической в любых координатах. Очевидно, что даже и призакон обратных квадратов строго выводится только в случае постоянства к, что вновь приводит нас к стандартным координатам Шварцшильда с простой лишь сменой шкалы. Таким образом, уравнение геодезической (1.2.9) в стандартных координатах Шварцшильда является непосредственным релятивистским обобщением уравнения Ньютона (1.3.1). В этих координатах мы и будем рассматривать теорию орбитального движения, принимая ньютоново решение как первое приближение.

  • 333. Пространство без бесконечности
    Статья пополнение в коллекции 29.12.2009

    За точку отсчёта идеально-определённого пространства можно принять любую точку этого пространства. Привяжем к этой точке точку начала отсчёта декартовой системы координат и начнём получать отображение идеально-определённого пространства в декартовой системе координат. Выберем любую прямую в декартовой системе координат, проходящую через начало отсчёта. Одномерное идеально-определённое пространство в этом направлении отобразится на этой прямой в виде отрезка, середина которого совпадает с точкой отсчёта, подобно тому, как в локальном примере отображается окружность на прямой. Другими словами, если наше пространство не содержит ?, то, пройдя по этой прямой из начала системы координат в одну и другую сторону на вполне определённое одинаковое расстояние, называемое длиной меридиана Вселенной, мы окажемся в одной и той же точке, называемой противоположным полюсом относительно точки начала отсчёта. Одна и та же точка (полюс) отобразиться на этой прямой в виде двух точек подобно тому, как при отображении окружности на отрезке прямой. Движение по этой прямой в одномерном идеально-определённом пространстве отобразиться на этой прямой в виде движения по отрезку отображения одномерного идеально-определённого пространства на прямой в декартовой системе координат. Это движение будет просчитываться точно также как и в первом локальном примере.

  • 334. Проявление солнечной активности в геофизических параметрах
    Информация пополнение в коллекции 20.06.2010

    Проблема «Солнце Земля» является на сегодняшний день актуальной по многим причинам. Во-первых, это проблема альтернативных источников энергии на Земле. Солнечная энергия неисчерпаемый источник энергии, притом безопасный. Во-вторых, это влияние солнечной активности на земную атмосферу и магнитное поле Земли: магнитные бури, полярные сияния, влияния солнечной активности на качество радиосвязи, засухи, ледниковые периоды и др. Изменение уровня солнечной активности приводит к изменению величин основных метеорологических элементов: температуры, давления, числа гроз, осадков и связанных с ними гидрологических и дендрологических характеристик: уровня озер и рек, грунтовых вод, солености и оледенения океана, числа колец в деревьях, иловых отложений и т.п. Правда в отдельные периоды времени эти проявления происходят только частично или вовсе не наблюдаются. В-третьих, это проблема «Солнце биосфера земли». С изменением солнечной активности учеными было замечено изменение численности насекомых и многих животных. В результате изучения свойств крови: числа лейкоцитов, скорости свертывания крови и др., были доказаны связи сердечно-сосудистых заболеваний человека с солнечной активностью.

  • 335. Псковские астрономические наблюдения
    Дипломная работа пополнение в коллекции 09.12.2008

    К сожалению, сигналы точного времени широковещательных радиостанций типа "Маяк" и "Радио России" непригодны для синхронизации часов, по которым засекаются моменты покрытия и открытия звезды. Погрешность излучения сигналов этих станций, согласно бюллетеню издательства стандартов "Эталонные сигналы частоты и времени", составляет 0,1с для европейской части России и 0,4с для азиатской. Это уже слишком низкая точность для научных целей. Но, кроме того, сигнал от этих радиостанций к приёмнику проходит через несколько ретрансляторов. Расстояние, пройденное сигналом, и задержку сигнала в пути из-за этого определить невозможно. Кроме того, неизвестна задержка сигнала каждым ретранслятором, а это довольно существенная величина. Интересно, что в некоторых городах передачи "Радио России" (вместе с сигналами "шесть точек"!) идут в записи. То есть к точному времени вообще никакого отношения не имеют! А разница между передаваемыми в прямом эфире разными станциями сигналами "шесть точек" составляет до нескольких секунд(!) Для привязки к точному времени астрономических наблюдений существуют специализированные отечественные радиостанции - РВМ, РБУ, РИД, РТА и др., а также множество зарубежных. Погрешность излучения эталонных сигналов времени отечественными станциями составляет не более 30 мкс. Из них владельцу бытового радиоприёмника доступна лишь РВМ (приём остальных требует использования специальных приёмников). Передатчики радиостанции РВМ работают круглосуточно на частотах 4996, 9996 и 14996 кГц, что соответствует коротких волнам 60 м, 30 м и 20 м. На расстояниях меньше 1000 км приём возможен лишь на двух первых частотах: 4996 кГц - ночью, 9996 кГц - в светлое время суток. 10 минут РВМ не передаёт информации о времени только эталонную частоту (синусоидальный сигнал с частотами, названными выше) и сигналы опознавания радиостанции. Следующие 10 минут РВМ передаёт сигналы А1 с частотой повторения 1 Гц, следующие 10 минут сигналы А1 с частотой повторения 10 Гц. Этот 30-минутный цикл повторяется бесконечно. [9]

  • 336. Пульсар
    Информация пополнение в коллекции 12.01.2009

    слово "пульсар", далее даются прямое восхождение в часах ( 195h 0)

  • 337. Пьер Симон Лаплас. Возникновение небесной механики
    Информация пополнение в коллекции 12.01.2009

    В наши дни все более существенной становится связь космогонии с геологией и другими науками о Земле, с аналогичным непосредственным исследованием других планет с помощью космических лабораторий, т. е. с планетологией вообще. Действительно, что было известно о планетах при их наблюдении лишь с Земли, вплоть до 70-х годов нашего века? Их массы, средние плотности, не всегда правильное представление об их атмосферах и облаках в них. О рельефе, кроме разве что лунном, не было известно ничего. Интерпретация же картины, видимой в телескоп, оказывалась нередко совершенно ошибочной (пример тому ошибочное представление о Марсе, якобы покрытом растительностью!). В последние 2 десятилетия исследования с космических аппаратов принесли совершенно неожиданные сведения о планетах, особенно неожиданные в отношении планет земной группы, казалось бы, более или менее сходных с Землей. Поверхность Венеры оказалась раскаленной до многих сотен Кельвинов, атмосфера ее насыщенной ядовитыми сернистыми парами. Поверхности всех этих планет и практически всех спутников оказались густо покрытыми кратерами, наподобие лунных, прежде всего явно ударного, метеоритного происхождения. Но и наличие вулканических кратеров, существование которых давно подозревалось на Луне, подтвердилось непосредственным наблюдением с космических станций «Вояджер» извергающихся вулканов на спутнике Юпитера Ио. С полдюжины вулканов во время пролета станции извергали на сотни километров в высоту пламя, дым, изливали потоки сернистой лавы.

  • 338. Пьер Симон Лаплас. Возникновение небесной механики
    Информация пополнение в коллекции 08.10.2010
  • 339. Работы по атмосферной оптике во время полных солнечных затмений
    Информация пополнение в коллекции 02.08.2010

    Фотометр укладывается горизонтально на деревянные подставки и укрепляется на доске, причём его установка выверяется по отвесу и уровню. Кольцевой полуцилиндр и оси трубок располагаются в одном вертикале. Необ ходимо, конечно, заранее рассчитать азимут Солнца для середины полной фазы затмения, и в этом вертикале установить фотометр. Поскольку полная фаза затмения весьма непродолжительна (23 минуты), то не имеет смысла поворачивать фотометр по азимуту за Солнцем, так как за время продолжительности полной фазы суточное смещение Солнца не превосходит 0°,5, что лежит в пределах диаметра площадки неба, охватываемой каждой трубкой. За время полной фазы с этим фотометром можно сделать 1012 экспозиций (по 5 сек. каждая). Фотометрию в вертикале Солнца тоже весьма желательно провести с различными фильтрами, для чего нужно иметь несколько вертикальных фотометров. Экспозиции для каждого фильтра нужно подбирать отдельно, как рассказано выше. Зарядка этого фотометра производится в полной темноте, совершенно так же, как и зарядка заревого фотометра.

  • 340. Радиотехника и космос
    Информация пополнение в коллекции 12.01.2009

     ôåâðàëå 1976 ãîäà ñîâåòñêèå è àìåðèêàíñêèå ó÷åíûå îñóùåñòâèëè èíòåðåñíûé ýêñïåðèìåíò ðàäèîòåëåñêîïû Êðûìñêîé è Õàéñïòåêñêîé (ÑØÀ) îáñåðâàòîðèé â ýòîì îïûòå èãðàëè ðîëü «ãëàç» èñïîëèíñêîãî ðàäèîèíòåðôåðîìåòðà, à ðàññòîÿíèå âî ìíîãî òûñÿ÷ êèëîìåòðîâ ìåæäó ýòèìè îáñåðâàòîðèÿìè áûëî åãî áàçîé. Òàê êàê áàçà áûëà î÷åíü âåëèêà è êîñìè÷åñêèå ðàäèî îáúåêòû íàáëþäàëèñü ñ ðàçíûõ êîíòèíåíòîâ, äîñòèãíóòàÿ ðàçðåøàþùàÿ ñïîñîáíîñòü îêàçàëàñü ïîèñòèíå ôàíòàñòè÷åñêîéîäíà äåñÿòèòûñÿ÷íàÿ äîëÿ ñåêóíäû äóãè! Ïîä òàêèì óãëîì âèäåí ñ Çåìëè íà Ëóíå ñëåä îò íîãè êîñìîíàâòà! Ïîçæå ê ýòèì ýêñïåðèìåíòàì ïðèñîåäèíèëèñü è àâñòðàëèéñêèå ó÷åíûå, òàê ÷òî àñòðîíîìû «âçãëÿíóëè» íà êîñìè÷åñêèå ðàäèîèñòî÷íèêè ñðàçó ñ òðåõ êîíòèíåíòîâ. Ðåçóëüòàòû îïðàâäàëè çàòðà÷åííûå óñèëèÿ: â ÿäðàõ ãàëàêòèê è êâàçàðàõ îáíàðóæåíû âçðûâíûå ïðîöåññû íåîáû÷àéíîé àêòèâíîñòè, ïðè÷åì â ðÿäå ñëó÷àåâ íàáëþäàåìàÿ ñêîðîñòü ðàçëåòà êîñìè÷åñêèõ îáëàêîâ â êâàçàðàõ, ïî-âèäèìîìó, ïðåâîñõîäèò ñêîðîñòü ñâåòà!