II. Философия в эпоху развития рабовладельческой демократии

Вид материалаДокументы

Содержание


Недоказуемые элементы
Метод установления исходных принципов науки
Подобный материал:
1   ...   33   34   35   36   37   38   39   40   ...   60




324

 

есть построение равносторонней прямоугольной фигуры, равновеликой неравносторонней, В ответе этом высказано определение. Особенность его в том, что в нем нет указания на причину самой равновеликости. Согласно Аристотелю, такое определение есть не доказательство, оно дает лишь заключение доказательства [9, II, 2,413 а 13 и сл.]. Такое определение, по наблюдению Аристотеля, встречается редко, и Аристотель считает это недостатком большинства существующих определений. «Ведь определение, — говорит он, — должно вскрыть не только то, что есть, как это делается в большинстве определений, но определение должно заключать в себе и обнаруживать причину» [там же].

В проблеме доказательства Аристотель различает знание достоверное и лишь вероятное («правдоподобное»). Началом доказательства не может быть, по Аристотелю, ни неправдоподобное, ни даже правдоподобное знание, и умозаключение должно быть построено из необходимых посылок. «...Началом, — читаем в «Аналитике», — не является правдоподобное или неправдоподобное, но первичное, принадлежащее к тому роду, о котором ведется доказательство...» [5, I, 6, 74 в]. Две мысли характерны для аристотелевской теории Доказательства. Первая состоит в утверждении, что исходные начала доказательства — сущности, природа которых недоступна доказательству; вторая — в утверждении, что доказательство все же способно получать из сущностей свойства, вытекающие из их природы. Достигается это посредством деления. Для этого необходимо. «брать все, относящееся к существу [вещи], и делением [все] расположить по порядку, постулируя первичное и ничего не оставляя без внимания. И это [приписываемое] необходимо [содержит определение], если все включается в деление и ничего не упускается» [5, II, 5, 91 в 28 сл.].

Ценность, в глазах Аристотеля, этого способа получения свойств из сущностей представится еще большей, если учесть, что сущности, познание которых имеет в виду Аристотель, в большинстве не простые, а сложные. Знание о таких сущностях дано в суждениях, которые указывают отношение «материи» к «форме»..

'Именно этот метод применяется в доказательстве. Последнее есть умозаключение, в котором из сущности с необходимостью получаются истинные свойства. Свой-




 




325

 

ства эти следуют из сущности, но не порождают ее как таковую. Научное умозаключение исходит как из начальных и непосредственных, из максимально очевидных истин. Заключение зависит от них как от своей причины, а его применение адекватно его предмету.

Задача доказательства — привести к усмотрению, что некоторое свойство принадлежит предмету или что некий предикат принадлежит субъекту.

Возможные виды силлогизмов не исчерпываются его научной формой. «...[Всякое] доказательство, — говорит Аристотель, — есть некоторого рода силлогизм, но не всякий силлогизм — доказательство» [4, I, 4, 25 в 29]. И он выделяет в классе силлогизмов «риторические» и «диалектические» силлогизмы, вполне корректные по логической связи между посылками и заключениями, но начала их — только вероятные положения, принятые на веру. А в «Топике» [см. Топика, IX, 11, 171 в 8] Аристотель указывает как виды умозаключений силлогизмы «софистические» и «эвристические». В этих силлогизмах, которые по сути есть лишь разновидности предшествующих, более обнажен всего лишь вероятный характер положений, на которых они основываются.

Силлогизм, лишенный того, что делает его доказательным, не способен дать знания о необходимой причинной связи. Для такого знания в известном смысле лучше, если причинная связь интерпретирована в понятиях содержания, например «смертность принадлежит человеку». Аристотель часто дает именно такую интерпретацию. Но еще важнее для него интерпретация причинной связи как включения. Это или включение частного в общее, или в ид а в род посредством выделения видового различия, или единичного экземпляра в класс.

И в посылках и в заключении речь идет о свойствах всеобщего (универсального), и в каждом .случае иной оказывается только степень всеобщности. Аристотель неоднократно и настойчиво разъясняет, что не может быть доказательства о единичном, как таковом, о чувственно воспринимаемом как таковом, о преходящем как таковом. Доказательство возможно только о всеобщем или хотя бы постоянном. «...Если бы общего не было, то не было бы и... никакого доказательства» [5, I, 11, 77 а]. А в «Метафизике» [7, VII, 15, 1039 в 34 сл.] читаем: «...ясно, что для чувственных вещей ни определения, ни доказательства быть не может». И далее: уничтожаю-




 




326

 

щиеся вещи «перестают быть известными... людям, обладающим знанием, когда выйдут из области чувственного восприятия... ни определения, ни доказательства по отношению к этим вещам существовать уже не будет» [там же].

Яркая особенность теории познания Аристотеля в том, что для него задачей науки может быть только .достоверное — общее и необходимое — знание. Научное знание Аристотель четко отличает от предположения и от мнения. «Предмет науки и наука отличаются от предполагаемого и от мнения, ибо наука есть общее [и основывается на] необходимых [положениях]; необходимо же то, что не может быть иначе. Некоторые предметы [истинны] и существуют, но могут быть и иными. Ясно поэтому, что о них нет науки» [5, I, 33, 88 в]. .

Поэтому и знание о причине есть знание об общем. Во всех доказательствах, выясняющих принадлежность некоторого свойства, некоторой сущности, причина — всеобщая. Она есть часть содержания более обширного всеобщего и вместе с тем содержит в себе менее широкое всеобщее или же часть этого всеобщего: коллективную либо единичную.

Исследование причинного отношения Аристотель считает основной задачей научного знания: «...рассмотрение [причины», почему есть [данная вещь», есть главное в знании» [5, I, 14, 79 а].

Для Аристотеля «знать, что есть [данная вещь» и знать причину того, что она есть, — это одно и то же» [5, II, 8, 93 а]. Именно потому, что силлогизм первой фигуры больше, чем силлогизмы других видов, способен обосновывать знание причинных отношений, Аристотель считал первую фигуру наиболее ценным видом умозаключения. «Среди фигур [силлогизма], — писал он, — первая является наиболее подходящей для [приобретения] научного знания, ибо по ней ведут доказательства и математические науки, как арифметика, геометрия, оптика, и, я сказал бы, все науки, рассматривающие [причины», почему [что-нибудь] есть, ибо силлогизм о том, почему [что-нибудь] есть, получается или во всех, или во многих случаях, или больше всего именно по этой фигуре» [там же, 79 а].

Это понятие о причине делает ясной роль среднего термина в умозаключении и доказательстве. Средний




 




327

 

термин есть также понятие, общее двум понятиям, отношение которых рассматривается в силлогизме и доказательстве. Вместе с тем средний термин выступает в доказательном рассуждении как причина: «Причина: того, почему [нечто] есть не это или это, а [некоторая] сущность вообще, или [почему нечто есть] не вообще, но что-то из того, что присуще само по себе или случайно, — [причина всего этого] представляет собой средний термин» [там же, II, 2, 90 а 9 сл.].

Особенно ясно выступает свойство среднего термина быть причиной в достоверных доказательных умозаключениях. Во всех таких умозаключениях достоверность их — не только достоверность какой-то причины, а именно истинной причины.

Очень характерно для Аристотеля, что единичные предметы, термины которых выступают в умозаключении доказательства, рассматриваются сами по себе все же как универсальные. «Ни одна посылка, — говорит Аристотель, — не берется так, чтобы она [относилась только] к тому числу, которое ты знаешь, или только к той прямолинейной [фигуре], которую ты знаешь, но [она] относится ко всякому [числу] или прямолинейной [фигуре]» [там же, I, 1, 71 в 3 и сл.]. Даже если для непосредственного созерцания фигура единична, то сама по себе она универсальна.

В соответствии с этим в математическом доказательстве причина, или основание, есть понятие, посредствующее между другими понятиями: оно подчинено одному из них и подчиняет себе другое. В анализируемых Аристотелем примерах (построение треугольника, вписанного в полукруг и опирающегося основанием на его диаметр, а также доказательство, что вписанный в полукруг угол равен прямому углу) Аристотель совмещает собственно математическую разработку доказательства с логическим анализом отношения его понятий. Он рассматривает математические отношения математических объектов как логические отношения классификации и включения понятий, образующих систему подчинения по объему. В таких доказательствах то, что представляется единичным, рассматривается как вид рода или как часть вида. Другими словами, математическое доказательство, по Аристотелю, выясняет системную связь и зависимость понятий по объему и есть не что иное, как некий род их классификации.




 




328

 

Это понимание доказательства преодолевало важный пробел теории познания Платона. У Аристотеля методом науки становится доказательство. Изображенный Платоном процесс деления обретает недостававшее ему посредствующее звено. Впервые теперь деление получает основание: нет необходимости, как раньше, постулировать каждый из его шагов. Доказательство как метод науки шире платоновского деления («диайрезиса»): «Легко усмотреть, что деление по родам составляет только незначительную часть изложенного нами метода... при делении то, что должно быть доказано, постулируется, но при этом всегда что-нибудь выводится из более общих [понятий]».*

Однако Аристотель вводит в учение о применимости доказательства важное ограничение. Обусловлено оно его убеждением в том, что общность может существовать только между подчиненными одно другому понятиями. Каждая отдельная наука имеет свой особый высший род, но переход от одного рода к другому невозможен: между понятиями, образующими координацию, нет и не может быть общего. «Нельзя, следовательно, — утверждает Аристотель, — вести доказательство так, чтобы из одного рода переходить в другой... нельзя геометрическое положение доказать при помощи арифметики» [5,1,7]; «...арифметическое доказательство всегда имеет дело с тем родом, относительно которого ведется [это] доказательство» [там же]; «...[вообще] нельзя доказать посредством одной науки [положения] другой, за исключением тех [случаев], когда [науки] так относятся друг к другу, что одна подчинена другой, каково, например, отношение оптики к геометрии и гармонии — к арифметике» [там же].

^ Недоказуемые элементы

Всякое доказательство опирается на некоторые положения, как на исходные начала. Иногда начала, в свою очередь, выводятся из некоторых предшествующих им начал посредством нового доказательства. Однако этот процесс восхождения от начал недоказуемых в пределах данного доказательства к их обоснованию посредством нового доказательства, не может идти в бесконечность. Согласно выражению Аристо-






* «Первая Аналитика», 1, 31, 46 а 31 и сл.; о невозможности получить заключение и определение посредством деления говорит также 5-я глава 2-й книги «Второй Аналитики».

 

 




329

 

теля, «по направлению вверх» идут и относящиеся к сущности и случайные признаки, «однако и то и другое не бесконечно. Необходимо, следовательно, должно быть нечто, чему что-то приписывается первично... и здесь должен быть предел и должно быть нечто, что больше не приписывается другому предшествующему и чему другое предшествующее [больше не приписывается]» [5, I, 22, 88 в].

Так обстоит дело с познанием свойств, приписываемых единичным «сущностям». В их иерархии есть предел для восхождения и нисхождения. Но существует также и предел для доказательства приписываемых свойств; «...ни по направлению вверх, ни по направлению вниз приписываемое не может быть бесконечным в рассматриваемых [нами] науках, дающих доказательства» [там же, 84 а]. То, что содержится в существе вещей, «не бесконечно, в противном случае невозможно было бы [их] определение. Так что если все приписываемое обозначается как [присущее] само по себе, а то, что есть само по себе, не бесконечно, то существует предел по направлению вверх и, следовательно, по направлению вниз» [там же]. Отсюда Аристотель выводит, что необходимо должны быть начала доказательств и что нет доказательства всего [см. там же]. В конце концов, мы дойдем до начал, составляющих независимую основу всех зависимых от них положений: эти начала уже не доказываются.

Аристотель различает три вида недоказуемых начал: 1) аксиомы; 2) предположения; 3) постулаты.

Аксиомы — положения, обусловливающие возможность какого бы то ни было знания либо в любой науке, либо в группе взаимозависимых наук. Пример аксиомы, общей для всех наук, — начало, или закон противоречия. Начало это — не гипотеза, а то, что необходимо знать человеку, если он познает хоть что-нибудь. Согласно этому началу, «невозможно, чтобы одно и то же вместе было и не было присуще одному и тому же и в одном и том же смысле» [7, IV 3, 1005 19 — 20]. Пример аксиомы, общей для группы наук: две величины остаются равными, если у них отнять равные части. Аксиомы имеют силу для всего существующего, а не специально для одного какого-либо рода. Пользуются ими, потому что они определяют сущее как таковое. Однако в каждом отдельном исследовании с аксиомами имеют дело




 




330

 

в зависимости от того. как далёко простирается род, к области которого относятся развиваемые доказательства. Так как аксиомы применяются ко всему, поскольку оно есть нечто сущее, или свойство, одинаково присущее всему, то никакой ученый, ведущий исследование частного характера, не может сказать о них, истинны они или ложны: ни геометр, ни арифметик. Некоторые физики притязали на это, так как полагали, будто физика исследует, всю природу и все сущее. Но так как природа — только отдельный род существующего, и физика — не первая мудрость, то вполне компетентна в исследовании аксиом только философия. Только философия может указать самое достоверное из всех начал, по отношению к которому нельзя ошибиться [см. 7, IV, 3, 1005 а — 1005 в].

Предположениями Аристотель называет положения, которые сами по себе доказуемы, но в пределах данного научного рассуждения принимаются без доказательства. При предположении принимаемое положение кажется учащемуся правильным. Или, согласно определению Аристотеля, «все то, что хотя и доказуемо, но сам [доказывающий] принимает, не доказывая, и учащемуся это кажется [правильным], — это есть предположение» [5, I, 10, 76 в]. Предположение небезусловно и имеет значение лишь для учащегося, для которого оно сформулировано или выдвинуто. Функция предположений в суждении — в обосновании заключений: «...[предположения] — это [суждения], при наличии которых получается заключение благодаря тому, что они, есть» [там же].

Постулатами («требованиями») Аристотель называет положения, которые принимаются в пределах данного научного рассуждения, но принимаются или при полном отсутствии у учащегося мнения по поводу исследуемого предмета, или даже при наличии несогласия учащегося с постулируемым положением. «...Если принимают [что-то], в то время, как [учащийся] не имеет никакого мнения [об этом] или имеет мнение, противное [этому], то постулируют это» [там же].

^ Метод установления исходных принципов науки

Мы рассмотрели первые две части учения Аристотеля о научном познании: диалектику вероятного знания и метод достоверной науки. Третью часть его учение о познании составляет учение о методике установления исходных положений науки.




 




331

 

Уже в аристотелевской «диалектике» показывается, каким образом ум может подготовляться — посредством отбрасывания заблуждений, ложных мнений — к достоверному созерцанию основных положений науки. Специальным методом подготовки к усмотрению общего — через частное — должна быть, по Аристотелю, «индукция» (). Применение этого слова стало техническим термином логики, по-видимому, впервые у Аристотеля. Первоначально термин мог означать способ перехода от одних знаний, которыми ученики уже владели, к новым. Аристотелевская «индукция» уже есть путь от единичных случаев к общим положениям. Разъяснение термина в этом смысле дано в «Топике». Но в «Аналитике» в качестве отправного пункта индукции указано вместо «единичного» «частное», а индукция как метод противопоставлена дедукции, отправляющейся от всеобщего.

Вся небольшая глава 1-й книги «Второй Аналитики» доказывает, что общее знание невозможно без индукции, а индукция — без чувственного восприятия. Если нет чувственного восприятия, рассуждает Аристотель, «то необходимо будет отсутствовать и какое-нибудь знание, которое невозможно [в таком случае] приобрести, поскольку мы научаемся [чему-нибудь] либо через индукцию, либо посредством доказательства» [5, I, 18, 81 а — 81 в]. Хотя доказательство исходит из общего, а индукция — из частного, однако и общее «нельзя рассматривать без посредства индукции, ибо и так называемое отвлеченное познается посредством индукции, [именно], если кто-либо хочет показать, что некоторые [признаки]... присущи каждому роду... Но индукция невозможна без чувственного восприятия, так как чувственным восприятием [познаются] отдельные [вещи], ибо [иначе] получить о них знание невозможно» [там же]. Таким образом, «как знание, [приобретаемое] из общего, невозможно без индукции, так и [знание] посредством индукции невозможно без чувственного восприятия» [там же, 81в].

«Индуктивные» умозаключения, как их понимает Аристотель, не составляют еще науку в собственном смысле, но образуют (наподобие аристотелевских «диалектических» аргументов) только подготовление к ней, или преддверие к ним.

Характерно, что как на своего предшественника в обосновании метода науки Аристотель указывает не на




 




332

 

Платона, с которым он в этой связи полемизирует, а на Сократа Но тут же он подчеркивает, что даже у Сократа речь шла не о самой науке, а только о «начале знания»: «...две вещи надо было бы отнести на счет Сократа — индуктивные рассуждения и образование общих определений: в обоих этих случаях дело идет о начале знания» [7, XIII, 4,1078 в 27 и сл ]. Напротив, платоновская «диалектика» как учение об «идеях», приписавшее общим сторонам вещей обособленное существование, не может быть истинным методом науки.

Аристотель находит, что «диалектический» (в его, аристотелевском, смысле) силлогизм и «индукция» определяют формальный характер двух видов вывода, которые он назвал «энтимемой» и «примером».*

«Энтимема»

Исходной точкой «энтимемы» Аристотель считает предположение некоторого общего положения, которому должны быть подчинены частные случаи Например: если война — причина бедствий, от которых мы страдаем, то мы можем исправить свое состояние только посредством мира [см. 13, I, 23] Рассуждение предполагает здесь вероятность не только для некоторых частных случаев, но и общего значения. Эта вероятность касается результатов войны и мира, которые могут быть сопоставлены. Но «энтимема» может иметь исходной точкой и другое, принятое в качестве общего или обычного, отношение «признака».

Посредством такого умозаключения не получается объяснение, а только удостоверяется или отвергается существование. Оно не может ответить ни на вопрос «почему», ни на вопрос «что есть».

Сходна познавательная функция и «примера». Но в то время как «энтимема» только предполагает общий принцип, на котором в ней основывается умозаключение, «пример» указывает его обоснование. Рассмотрим образец аристотелевского «примера». Дано некоторое общее утверждение: если первое должностное лицо государства требует лично для себя стражи, то это признак его тайного стремления к тирании. Таков случай с Писистратом С этим случаем сопоставляется другой: Дионисий Сиракузский тоже требует для себя стражи. Сле-






* «Энтимема», «пример» я другие термины логика Аристотеля рассматриваются в этой главе не по существу своего логического содержания, а лишь в своей теоретико-познавательной функции.