Перевод с английского под редакцией Я. А. Рубакина ocr козлов М. В
Вид материала | Документы |
- Руководство еврахим / ситак, 1100.7kb.
- Введение в физиологию. (лекция разработана к б. н. О. В. Погадаевой), 292.58kb.
- Слобин Д., Грин Дж. Психолингвистика. Перевод с английского Е. И. Негневицкой/ Под, 3816.7kb.
- Н. М. Макарова Перевод с английского и редакция, 4147.65kb.
- Камера джон гришем перевод с английского Ю. Кирьяка. Ocr tymond Анонс, 6452.48kb.
- Евстратова, К. Виткова Художник обложки В. Королева Подготовка иллюстраций Н. Резников, 2183.64kb.
- Евстратова, К. Виткова Художник обложки В. Королева Подготовка иллюстраций Н. Резников, 2205.08kb.
- Под редакцией А. И. Козлова, Д. В. Лисицына,, 1651.6kb.
- Баринова Анна Юрьевна учитель английского языка Как правильно готовить проект к урок, 42.88kb.
- Галили клайв баркер перевод с английского Е. Болыпелапова и Т. Кадачигова. Перевод, 8625.28kb.
Мы уже видели, что этот взгляд на происхождение комет согласуется с характером их орбит; причем доказательство, вытекающее отсюда, гораздо серьезнее, чем было указано. Большинство кометных орбит причисляются к параболическим; обыкновенно предполагают, что кометы являются из отдаленных пространств и никогда более не возвращаются. Но не ошибочно ли причисляются их орбиты к параболическим? Наблюдения над кометою, двигающейся по чрезвычайно эксцентрическому эллипсу, возможные лишь тогда, когда она находится сравнительно близко к перигелию, не дают возможности отличить ее орбиту от параболы. Очевидно, было бы рискованно причислять ее к параболе лишь вследствие того, что невозможно найти в ней элементы эллипса. Хотя только что упомянутое затруднение является неизбежным следствием чрезвычайной эксцентричности орбиты, тем не менее вполне возможно, что кометы имеют именно эллиптические орбиты. Хотя пять или шесть из них считаются гиперболическими, тем не менее, как я узнал от человека, обратившего особенное внимание на кометы, "такая орбита не была вычислена ни для одной хорошо наблюденной кометы". Следовательно, весьма возможно, что все орбиты суть эллипсы. Эллипсы и гиперболы имеют бесчисленное разнообразие форм, но существует лишь одна форма параболы, или, выражаясь точнее, все параболы сходны между собою, тогда как есть бесконечное множество различающихся друг от друга эллипсов и гипербол. Следовательно, все направляющееся к Солнцу из далекого пространства должно иметь точное количество надлежащего движения, чтобы описать параболу; всякое другое количество дало бы гиперболы или эллипсы. Если нет гиперболических орбит, то огромное большинство вероятии стоит за то, что все орбиты эллиптические. Они именно такими и были бы, если бы кометы имели выше предположенное происхождение.
А теперь от этих бродячих тел перейдем к более важным и более знакомым нам частям Солнечной системы. Замечательная гармония, существующая между их движениями, первая навела Лапласа на мысль, что Солнце, планеты и спутники их произошли из одного и того же генетического процесса. Подобно тому как сэр Вильям Гершель был приведен своими наблюдениями туманных пятен к заключению, что звезды произошли от сгущений вещества, рассеянного в пространстве, так и Лаплас своими наблюдениями над устройством Солнечной системы был приведен к заключению, что особенности ее могут быть объяснены лишь вращением сгущающегося вещества. В своем "Изложении системы мира" он вычисляет следующие факты, как главнейшие доказательства, говорящие в пользу теории развития: 1) движение всех планет в одном и том же направлении и почти в одной и той же плоскости, 2) движение спутников в одном направлении с планетами, 3) вращение этих различных тел и Солнца на своих осях, происходящее в одном направлении и почти в одной плоскости с их движением по орбитам, 4) незначительную эксцентричность орбит планет и их спутников, составляющую такую резкую противоположность с большою эксцентричностью кометных орбит. По его вычислению, вероятность, что эти гармоничные движения имеют одну общую причину, равняется двумстам тысячам биллионов против единицы. И заметьте, что эта громадная вероятность указывает на существование общей причины не в той форме, как ее обыкновенно понимают - в смысле незримой силы, действующей в качестве "великого художника, но в смысле незримой силы, действующей путем постепенного развития. Хотя сторонники обычной гипотезы и могут возразить, что движение планет вокруг Солнца в одном направлении и приблизительно в одной плоскости было необходимо для устойчивости всей системы, они не в состоянии объяснить этим же доводом одинаковость направления в движении этих тел вокруг их осей {Хотя закон этот неприложим к периферии Солнечной системы, тем не менее он неприложим только в тех случаях, когда ось вращения вместо того, чтобы быть почти перпендикулярною к плоскости орбиты, очень мало к ней наклонена, и где поэтому силы, стремящиеся произвести соответствие движений, не могли в достаточной степени проявить свое действие.}. Механическое равновесие нисколько не было бы нарушено, если бы Солнце вовсе не имело вращательного движения вокруг своей оси или если бы оно вращалось на своей оси в направлении, противоположном тому, в котором двигаются вокруг него планеты, или же - в направлении, пересекающем под прямым углом плоскость их орбит. С равной безопасностью движение Луны вокруг Земли могло бы быть обратно движению Земли вокруг своей оси; равным образом движение спутников Юпитера или Сатурна могло бы не согласоваться с направлением, в котором эти планеты вращаются на своей оси. Но так как ни одна из этих возможностей не имела места, то это единообразие должно быть рассматриваемо и в настоящем случае, и во всех других как доказательство подчиненности этих явлений некоторому общему закону; оно предполагает существование того, что мы называем естественной причинностью в противоположность произвольному устроению.
Таким образом, гипотеза развития была бы единственной вероятной даже и при отсутствии всяких указаний на частности этого развития. Но когда математик, авторитет которого не имеет себе равного, предлагает нам определенную теорию этого развития, основанную на положительно дознанных механических законах и объясняющую вполне как эти различные особенности, так и многие другие, второстепенные, то нам не остается почти никакой возможности устоять против того умозаключения, что Солнечная система произошла путем постепенного развития.
Что касается общего содержания теории Лапласа, то вряд ли его нужно здесь излагать. Популярные астрономические сочинения достаточно ознакомили большинство читателей с воззрениями Лапласа, что вещество, сгустившееся в настоящее время в Солнечную систему, составляло некогда обширный вращающийся, чрезвычайно разреженный сфероид, простиравшийся за пределы орбиты; что, по мере того как этот сфероид сжимался, скорость его вращения неизбежно возрастала; что возрастание центробежной силы от времени до времени препятствовало экваториальному поясу участвовать в дальнейшем движении сосредоточивавшейся массы, вследствие чего экваториальный пояс отставал в виде вращающегося кольца; что каждое из этих вращающихся колец, отделявшихся таким образом периодически, с течением времени разрывалось в какой-нибудь наиболее слабой точке и, сжимаясь мало-помалу, собиралось во вращающуюся массу; что и в этой массе, так же как и в первоначальной массе, из которой она образовалась, скорость вращения возрастала по мере уменьшения массы в объеме, и там, где центробежная сила была достаточно велика, отрывались подобным же образом кольца, которые окончательно стягивались во вращающиеся сфероиды, и что таким образом из этих первичных и вторичных колец образовались планеты и их спутники, между тем как из центральной массы образовалось Солнце. Кроме того, известно, что это априористическое умозаключение вполне согласуется с результатами, добытыми опытом. Д-р Плато показал, что, когда масса какой-нибудь жидкости ограждена, насколько это возможно, от влияния внешних сил, она непременно образует отдельные кольца, как скоро ее заставят вращаться с надлежащей быстротой, и что кольца эти образуют сфероиды, которые будут вращаться на своих осях в том же направлении, как и центральная масса. Таким образом, как скоро дана первобытная туманная масса, которая, приобретая вышесказанным путем вращательное движение, сосредоточивается под конец в обширный сфероид воздухообразного вещества, вращающийся вокруг своей оси, - все остальное объясняется механическими законами. Генезис Солнечной системы, выказывающей движения, подобные тем, которые мы наблюдаем в нашей, может быть предсказан, и умозаключение, на котором основано это предсказание, подтверждается опытом {Правда, не все положения Лапласа, в том виде, в каком он изложил их, изъяты от возражений. Один астроном, авторитет которого стоит чрезвычайно высоко и которому я очень обязан за некоторые критические замечания, сделанные им по поводу настоящей статьи, принимает за "гораздо более вероятное", что "кольцо туманного вещества, вместо того чтобы разорваться в одной какой-нибудь точке и стягиваться в одну массу, распадется на несколько масс" Этот возможный исход, действительно, кажется правдоподобнее. Но, допустив даже, что кольцо туманного вещества распадется на несколько масс, все же можно возразить, что так как надо принять вероятность в размерах отношения бесконечности к единице против того предположения, чтобы эти массы вышли одинаковой величины и находились друг от друга на одинаковом расстоянии, то они могут остаться равномерно распределенными вдоль своей орбиты, эта кольцеобразная цепь газообразных масс должна распасться на несколько групп, эти группы, при некоторых обстоятельствах, сольются в более крупные группы, и окончательным результатом будет образование одной массы. Я обратился с этим вопросом к одному астроному, авторитет которого едва ли уступает авторитету того, о котором было говорено выше, и он согласился со мною, что процесс, вероятно, совершится таким образом.}.
Но посмотрим теперь, не объясняются ли таким же образом, кроме этих наиболее выдающихся особенностей Солнечной системы, и другие, второстепенные. Начнем с соотношения между плоскостями планетных орбит и плоскостью солнечного экватора Если бы в то время, когда сфероид туманного вещества простирался за пределы орбиты Нептуна, все его части вращались в совершенно одинаковой плоскости или, вернее, в параллельных плоскостях; если бы все его части имели одну и ту же ось, то плоскости последовательных колец совпадали бы одна с другою и с плоскостью солнечного вращения. Но достаточно припомнить ранние периоды сгущения туманных масс, чтобы понять, что такого рода полное единообразие движения не могло существовать. Хлопья, которые, как мы уже говорили, оседали из неправильной, далеко рассеянной в пространстве туманной массы и со всевозможных точек ее устремились к общему своему центру тяжести, должны были двигаться не в одной плоскости, но по бесчисленному множеству плоскостей, пересекающих одна другую под всевозможными углами. Постепенное установление того вращательного движения, которое, как мы теперь видим, указывало на спиральные туманности, есть постепенное приближение к движению в одной плоскости. Но эта плоскость может определиться лишь с течением времени. Те хлопья, которые вращаются не в этой плоскости, но вступают в соединяющую массу под различными углами, будут стремиться совершать свое вращение вокруг своего центра, каждый в своей плоскости, и лишь с течением времени их движения будут отчасти уничтожены противоположными движениями, отчасти же сольются с общим движением. В особенности долго будут удерживать свое более или менее независимое направление те части вращающейся массы, которые находятся на самой окраине ее. Вот почему всего вероятнее, что плоскости колец, отделившихся прежде других, будут значительно разниться от средней плоскости всей массы, между тем как плоскости тех колец, которые отделились позже, будут разниться от нее менее. И тут опять-таки вывод в значительной степени совпадает с наблюдением. Хотя изменение и не представляет совершенной правильности, все же мы видим, что средним числом наклон уменьшается по мере приближения к Солнцу. И это все, что мы можем ожидать Так как части туманного сфероида должны были получиться с различными наклонами, то его слой должен был иметь плоскости вращения, уклоняющиеся от средней плоскости, в степени не всегда пропорциональной их расстоянию от центра.
Посмотрим теперь движение планет вокруг их осей. Лаплас приводил в числе прочих доказательств, говорящих за существование общей генетической причины, тот факт, что планеты вращаются на своих осях в том же направлении, в котором они движутся вокруг Солнца, и что оси их приблизительно перпендикулярны к их орбитам. Позднее было открыто, что Уран составляет исключение из общего правила, и еще позднее оказалось, что подобное же исключение составляет Нептун; так, по крайней мере, мы вправе думать, судя по движению спутников этих двух планет. Эта аномалия бросала, как полагали, сильную тень сомнения на умозрения Лапласа; с первого взгляда оно, действительно, так и есть. Но достаточно, кажется, некоторого размышления, чтобы убедиться, что аномалия эта вовсе не составляет неразрешимой загадки. Лаплас просто зашел слишком далеко, выставив несомненным результатом генезиса туманных масс то, что в некоторых случаях представляется не более как вероятным его результатом. Причину, определяющую направление вращения, он видит в большей абсолютной скорости внешней части отделившегося кольца. Но при известных условиях эта разница в скорости может быть незначительна, если еще вообще она существует. Если масса туманного вещества, приближающаяся спирально к центральному сфероиду и в конце концов присоединяющаяся к нему по касательной, состоит из частей, имеющих одинаковую абсолютную скорость, то, когда она соединится с экваториальной окружностью сфероида и будет двигаться вместе с нею, ее наружные части приобретут меньшую угловую скорость, чем внутренние. Отсюда следует, что если при одинаковой угловой скорости наружных и внутренних частей отделившегося кольца является стремление к вращению вокруг оси в том же направлении, как по орбите, то можно заключить, что при меньшей угловой скорости наружных частей кольца, чем внутренних его частей, результатом явится стремление к вращению в направлении обратном. Другое весьма важное обстоятельство составляет форма сечения кольца; форма эта в каждом отдельном случае должна была быть более или менее различна. Чтобы пояснить это, необходимо прибегнуть к примеру. Вообразим себе апельсин, причем точки, где апельсин примыкал к стеблю и к чашечке, будут изображать полюсы. Вырежем из корки вокруг линии экватора полоску. Эта полоска, если ее положить на стол так, чтобы концы ее сходились, образует кольцо, похожее на обруч бочонка, кольцо, толщина которого по направлению его диаметра весьма незначительна, но ширина которого в направлении, перпендикулярном к его диаметру, довольно значительна. Предположим теперь, что вместо апельсина, который представляет сфероид, очень мало сплющенный, мы возьмем более сплющенный сфероид, имеющий форму не слишком выпуклого, чечевицеобразного стекла. Если с краев или с экватора этого чечевицеобразного стекла мы отрежем небольшое кольцо, это кольцо будет разниться от предыдущего в том отношении, что наибольшая толщина его будет приходиться по направлению его диаметра, а не в линии, пересекающей его диаметр под прямым углом: это будет кольцо, несколько приближающееся к форме диска, только гораздо более тонкое. Итак, смотря по степени приплюснутости вращающегося сфероида, отделившееся кольцо может иметь или форму обруча, или форму диска. При этом следует принять в соображение еще один факт. В значительно приплюснутом или чечевицеобразном сфероиде форма кольца может быть различна, смотря по его величине. Очень тонкое кольцо, такое, которое захватило только самый верхний слой экваториальной поверхности, будет иметь форму обруча, между тем как более массивное кольцо, захватившее более удобоизмеримую часть диаметра сфероида, примет форму диска. Таким образом, смотря по степени сплющенности сфероида и по объему отделившегося кольца, наибольшая толщина этого кольца будет приходиться или в направлении его плоскости, или по линии, перпендикулярной к его плоскости. Но обстоятельство это должно иметь сильное влияние на вращение планеты, образующейся впоследствии из кольца. В туманном кольце, имеющем вполне обручеобразную форму, разница между скоростями движения внутренней и внешней поверхности должна быть очень незначительна. И такое кольцо, собравшись в массу, наибольший диаметр которой пересекает под прямым углом плоскость ее орбиты, придаст почти наверно этой массе преобладающее стремление вращаться в направлении, пересекающем плоскость орбиты под прямым углом. Там, где кольцо имеет не вполне обручеобразную форму и где, следовательно, различие между скоростью вращения внутренних и внешних слоев значительнее, там должны оказывать влияние два противоположных стремления: одно - побуждающее массу вращаться к плоскости орбиты, другое - побуждающее ее вращаться в направлении, перпендикулярном к этой плоскости; вследствие чего плоскость вращения примет некоторое среднее положение. Наконец, если туманное кольцо имеет резко выраженную дискообразную форму и вследствие этого сливается в массу, наибольшие размеры которой совпадают с плоскостью орбиты, оба эти стремления соединятся, чтобы вызвать вращение в этой плоскости.
Справляясь с фактами, мы видим, что они, насколько наши сведения позволяют нам судить, вполне согласуются с этим воззрением. Судя по громадной величине орбиты Урана и сравнительной незначительности его массы, мы можем заключить, что кольцо, из которого он образовался, было сравнительно тонкое и потому долженствовало иметь обручеобразную форму, в особенности если туманная масса была в то время менее приплюснута, чем впоследствии. Отсюда возникли: плоскость вращения, почти перпендикулярная к орбите планеты, и направление вращения, не выказывающее никакого соотношения к движению планеты по ее орбите. Масса Сатурна в семь раз больше массы Урана, диаметр же его орбиты составляет менее чем половину диаметра орбиты последнего; из этого следует, что генетическое кольцо Сатурна, имея окружность, меньшую половины окружности кольца Урана, и толщину в вертикальном направлении, меньшую половины толщины его, так как сфероид, наверное, был в то время столь же приплюснут, как и теперь, а быть может, и больше, должно было быть значительно шире; следовательно, форма кольца Сатурна должна была менее подходить к форме обруча и более приближаться к форме диска; несмотря на разницу в плотности, оно должно было быть, по крайней мере, вдвое или втрое шире по направлению своей плоскости. Вследствие этого вращение Сатурна на его оси происходит в одном направлении с его движением вокруг Солнца и в плоскости, уклоняющейся только на тридцать градусов от плоскости его орбиты. Вследствие тех же причин генетическое кольцо Юпитера, масса которого в три с половиной раза больше массы Сатурна, а орбита почти наполовину меньше, должно было быть еще шире - совершенно дискообразно, могли бы мы сказать. Вследствие этого и образовалась планета, плоскость вращения которой отклоняется от плоскости ее орбиты немногим больше чем на три градуса. Далее, рассматривая сравнительно ничтожные размеры Марса, Земли, Венеры и Меркурия, мы должны принять, что кольца их были очень тонки, так как постепенного уменьшения окружностей этих колец недостаточно, чтобы объяснить малые размеры образовавшихся из них масс; итак, форма этих колец должна была снова подходить к обручеобразной; вот почему плоскости их вращения снова отклоняются в более или менее значительной степени от плоскостей их орбит. Принимая в соображение возраставшую сплюснутость первоначального сфероида в последовательные периоды его сгущения и различные размеры отделявшихся колец, мы полагаем, что вращательные движения различных планет вокруг их осей не противоречат нашей гипотезе, но, наоборот, подтверждают ее.
Этим способом объясняются не только различные направления, но и различные скорости вращения. Казалось бы, всего естественнее, что крупные планеты будут вращаться на своих осях медленнее, чем мелкие; это побуждает ожидать наблюдения, делаемые нами на Земле над большими и маленькими телами. А между тем одно из следствий гипотезы туманных масс, особенно если станем развивать ее как выше, состоит в том, что крупные планеты будут вращаться быстро, мелкие же медленно; в действительности оно так и оказывается. При равенстве других обстоятельств сгущающаяся туманная масса, которая далеко рассеяна в пространстве и внешние части которой, следовательно, должны стремиться к общему центру тяжести издалека, приобретет во время этого процесса сгущения значительную скорость вращения на своей оси; малая же масса - наоборот. Еще заметнее будет эта разница там, где форма генетического кольца способствует, со своей, стороны ускорению вращения. При равенстве остальных условий генетическое кольцо, наибольшая ширина которого направлена по его плоскости, образует более быстро вращающуюся массу, чем такое кольцо, наибольшая ширина которого приходится под прямым углом с его плоскостью; если же кольцо и относительно и абсолютно широко, то вращение будет чрезвычайно быстро. Эти условия, как мы видели, представлял Юпитер; вот почему Юпитер обращается вокруг своей оси менее чем за десять часов. Сатурн, условия которого, как было объяснено выше, менее благоприятствовали быстрому вращению, употребляет на него десять с половиной часов. Наконец, Марс, Земля, Венера и Меркурий, кольца которых долженствовали быть очень тонки, употребляют на то же более чем двойное время, причем наименьшие имеют продолжительнейший период вращения.
От планет перейдем теперь к их спутникам. Здесь, не говоря уже о тех наиболее выдающихся фактах, на которые обыкновенно указывают, именно: о том, что они двигаются вокруг своих планет в том же направлении, в котором последние вращаются на своих осях, в плоскостях, незначительно отклоняющихся от плоскостей их экваторов, и почти по круговым орбитам, - мы встречаем и несколько других многознаменательных фактов, которые никак нельзя оставить без внимания.
К последним принадлежит, между прочим, тот факт, что в каждой группе спутников повторяются в малом виде отношения планет к Солнцу как в вышесказанном отношении, так и в порядке, в котором тела различных величин следуют одно за другим. Начиная от окраины Солнечной системы и переходя к ее центру, мы видим, что она представляет нам четыре большие внешние планеты и четыре внутренние сравнительно малой величины. Подобную же противоположность встречаем мы и между внешними и внутренними спутниками каждой планеты. Между четырьмя спутниками Юпитера это соотношение соблюдается, насколько то допускает малочисленность спутников: наибольшие размеры представляют два внешних спутника, наименьшие же - два внутренних. По новейшим наблюдениям, сделанным Ласселлом, то же самое применяется и к четырем спутникам Урана. Что касается Сатурна, вокруг которого вращается восемь планет второго разряда, то тут сходство становится еще разительнее как в распределении, так и в численном отношении: три внешних спутника велики, внутренние же малы; кроме того, здесь гораздо резче высказывается разница между наибольшим спутником, который величиною почти равняется Марсу, и наименьшим, который с трудом можно рассмотреть даже с помощью самых сильных телескопов. И тут еще аналогия не кончается. Подобно тому как в планетах, идя от окружности к центру, мы замечаем сначала постепенное увеличение объема, начиная с Нептуна и Урана, которые не слишком разнятся в величине, переходя к Сатурну, который гораздо больше, и кончая Юпитером, который представляет наибольшую величину, - так и между восемью спутниками Сатурна. Всех крупнее не тот, который лежит всего ближе к окраине, а, отступя от окраины, третий; точно так же из четырех спутников Юпитера наиболее крупный есть, идя из центра, предпоследний. Эти аналогии остаются необъяснимы с помощью теории конечных причин. Если бы действительно целью этих тел было освещать планету, которой они сопутствуют, то было бы гораздо целесообразнее, чтобы самое крупное тело было в то же время и ближайшее; при настоящем же их положении эти крупные тела, по причине своей отдаленности, меньше приносят пользы, чем самые мелкие. С другой стороны, эти самые аналогии служат новым подтверждением гипотезы туманных масс. Они указывают на действие общей физической причины; они заставляют предполагать генетический закон, действующий равно как в главной системе, так и во второстепенных.