Платонов Ю. М., Уткин Ю. Г

Вид материалаКнига

Содержание


4. Профилактика, диагностика и ремонт НГМД в ПК
5. Сетевые платы, причины отказов сетевых плат
6. Ремонт блоков питания ПК
Пользователи ПК! Перед тем как включать компьютер первый раз, не забудьте проверить положение этого переклю­чателя!
Подобный материал:
1   ...   9   10   11   12   13   14   15   16   ...   25

4. Профилактика, диагностика и ремонт НГМД в ПК

НГМД в ПК для пользования является такой же важной частью, как клавиатура, сканер, дисплей, принтер, — этот накопитель является одним из основных средств переноса информации с одного компьютера на другой, выжнейшим из устройств хранения информации.

Наиболее широкое распространение в ПК получили НГМД с дисками 5,25 и 3,5 дюйма, в последнее время в ос­новном 3,5 дюйма.


Конструкция и работа современного 3,5" дисковода (НГМД)

Основные внутренние элементы дисковода — рама, шпиндельный двигатель, блок головок с приводом и плата электроники.

Шпиндельный двигатель — плоский многополюсный, с постоянной скоростью вращения 300 об/мин. Двигатель привода блока головок — шаговый, с червячной, зубчатой или ленточной передачей. Для опознания свойств дискеты на плате электроники возле переднего торца дисковода ус­тановлено три механических датчика: два — под отверстиямизащиты и индикатора плотности записи, и третий — для определения момента опускания дискеты.

Вставляемая в щель дискета попадает внутрь дискетной рамы, где с нее сдвигается защитная шторка, а сама рама при этом снимается со стопора и опускается вниз, металлическое кольцо дискеты при этом ложится на вал шпиндельного дви­гателя, а нижняя поверхность дискеты — на нижнюю голов­ку (сторона 0). Одновременно освобождается верхняя голов­ка, которая под действием пружины прижимается к верхней стороне дискеты.

На большинстве дисководов скорость опускания рамы никак не ограничена, из-за чего головки наносят ощутимый удар по поверхностям дискеты, а это сильно сокращает срок их надежной работы.

В некоторых моделях дисководов (в основном фирмы Теас) предусмотрен замедлитель-микролифт для плавного опускания рамы. Для продления срока службы дискет и го­ловок в дисководах без микролифта рекомендуется при встав­лении дискеты придерживать пальцем кнопку дисковода, не давая раме опускаться слишком резко.

На валу шпиндельного двигателя имеется кольцо с магнит­ным замком, который в начале вращения двигателя плотно захватывает кольцо дискеты, одновременно центрируя ее на валу. В большинстве моделей дисководов сигнал от датчика опускания дискеты вызывает кратковременный запуск двига­теля с целью ее захвата и центрирования. Дисковод соединяется с контроллером при помощи 34-проводного кабеля, в котором четные провода являются сигнальными, а нечет­ные — общими. Общий вариант интерфейса предусматривает подключение к контроллеру до четырех дисководов, вариант для IBM PC — до двух.

В общем варианте дисководы подключаются полностью параллельно друг другу, а номер дисковода (0...3) задается перемычками на плате электроники; в варианте для IBM PC оба дисковода имеют номер 1, но подключаются при помо­щи кабеля, в котором сигналы выбора (провода 10-16) перевернуты между разъемами двух дисководов.

Иногда на разъеме дисковода удаляется контакт 6, игра­ющий в этом случае роль механического ключа. Интерфейс дисковода достаточно прост и включает сигналы выбора устройства (четыре устройства в общем случае, два — в варианте для IBM PC), запуска двигателя, перемещения головок на один шаг, включения записи, считываемые/записываемые данные, а также информационные сигналы от дисковода — начало до­рожки, признак установки головок на нулевую (внешнюю) дорожку, сигналы с датчиков и т. п. Вся работа по кодирова­нию информации, поиску дорожек и секторов, синхрониза­ции, коррекции ошибок выполняется контроллером.


Таблица 16. Распределение сигналов на разъеме (ленточного кабеля) интерфейса накопителя на гибком магнитном диске – НГМД

№ контакта

Назначение

Направление

нечетные

земля




2

резерв




4

управление индикатором

к НГМД

6

не используется




8

индексный

от НГМД

10

выбор накопителя 0

к НГМД

12

выбор накопителя 1

к НГМД

14

выбор накопителя 2

к НГМД

16

мотор включить

к НГМД

18

направление

к НГМД

20

шаг

к НГМД

22

запись данных

к НГМД

24

разрешение записи

к НГМД

26

дорожка 00

от НГМД

28

защита записи

от НГМД

30

чтение данных

от НГМД

32

выбор головки

к НГМД

34

готовность

от НГМД


Стандартный формат дискеты типа HD (High Density — высокая плотность) — 80 дорожек на каждой из сторон, на каждой дорожке 18 секторов по 512 байт. Уплотненный фор­мат — 82 или 84 дорожки, до 20 секторов по 512 байт или до 11 секторов по 1024 байта.

Фирмой ЗМ разработана новая технология изготовления дискет и накопителей, которая обеспечивает увеличение ем­кости дискеты до 120 Мб. При этом новые дисководы бу­дут поддерживать существующий стандарт чтение/запись (1,44 Мбайт).

ГМД выполнен из майлара, который покрыт компаундом-лаком, содержащим магнитные вещества. В дисках неболь-шой емкости применяется окись железа, а в дисках большей емкомсти вместо железа используется кобальт.

Широкое распространение ГМД объясняется следующи­ми преимуществами по сравнению с другими магнитными накопителями:

• по сравнению с магнитофоном НГМД допускает режим записи/считывания с произвольной выборкой;

• быстротой и удобством записи, изменения, считыва­ния и копирования информации;

• большим объемом памяти (от 360 Кбайт до 120 Мбайт) при большой скорости записи информации;

• надежностью, малыми габаритами и весом (10—20 граммов). В 1990 г доля НГМД среди других видов на­копителей возросла до 40 %.


Основные требования к хранению ГМД

1. Хранить в пакетах и дискохранилищах.

2. Не делать на них надписи карандашом или шариковой ручкой.

3. Не бросать, не «испытывать на излом».

4. Не хранить вблизи электромагнитных излучателей ис­точников питания, магнитов и тепловых источников.

5. Уничтожайте поврежденные ГМД.

6. Используйте качественные и фирменные ГМД.

7. Регулярно проверяйте ГМД на вирус.

8. Помните, что более дешевые ГМД имеют более тон­кий магнитный слой, который легко осыпается, со­кращая работоспособность ГМД.


Профилактика НГМД

Имея в виду известную поговорку «Время — деньги!» (в оте­чественной интерпретации: «Время, которое у нас есть, — это деньги, которых у нас нет»), помните, что время, затрачен­ное на профилактику, окупается стоимостью предотвращен­ного ремонта НГМД.

Профилактику можно проводить в соответствии со следу­ющими рекомендациями:

• оцените ежедневное время работы дисковода с зажжен­ным светодиодом;

• ежемесячно пылесосом производите его чистку;

• некоторые производители НГМД рекомендуют произво­дить ежемесячное размагничивание головок дисковода;

• каждые полгода проверяйте скорость дисковода, юс­тировку головок (с помощью специального юстировоч-ного диска);

• по мере загрязнения головок НГМД производите их чистку с помощью неабразивных, абразивных или «мокрых» чистящих дискет, также можно чистить вруч­ную спиртом. Полезное правило: чистить головку чте­ния (записи) каждые 40 часов работы НГМД;

• держите защелку дисковода закрытой все время, ког­да Вы не вставляете и не вынимаете ГМД. (Это пре­дотвратит попадание в дисковод пыли и грязи, а так­же спасет от заползания в него насекомых.)


Устройство НГМД

НГМД включает в себя:

• ГМД,

• привод диска,

• контроллер управления диском,

• устройство позицирования ГЧЗ на желаемой дорожке,

• устройство чтения и записи информации,

• блокировочные устройства. ГМД имеет 4 отверстия:

• для оси двигателя,

• окно для ГЧЗ,

• для индексирования сектора,

• для защиты от записи информации.

Контроллер управления ГМД выполнен на одной или не­скольких БИС.

Сигнал считывания с ГЧЗ подается на контроллер в после­довательном коде, после чего в параллельном коде выходит на шины данных микропроцессора. Номинальная частота ГЧЗ обычно изменяется в диапазоне 62,5-250 кГц.

Устройство позиционирования в зависимости от стандарта диска обеспечивает точную выборочную установку блока ГЧЗ на дорожке Устройство чтения и записи обычно выполнено на жесткой логике и обеспечивает согласование входных/ выходных сигналов ГЧЗ с контроллером. В НГМД имеется2 датчика — датчик маркера начала дорожки ДМНД и дат­чик «00» дорожки (ДНД). ДМНД срабатывает, когда отвер­стие на ГМД попадает в проем между светодиодом и фото-транзистором.

При этом формируется импульс маркера начала дорож­ки длительностью не менее 600 мс.

ДНД обычно выполняется в двух видах: либо с помощью фотодиода и светодиода фиксируется крайняя «00» дорожка, либо с помощью блокконтакта, который фиксирует крайнее положение кодового винта шагового двигателя, перемеща­ющего ГЧЗ.


Диагностика неисправностей НГМД

Перед диагностикой неисправного НГМД убедитесь, что вами испробованы все экспресс-средства, доступные пользо­вателю, а именно: проверьте установки платы контроллера в слот системной платы, правильность и надежность кабель­ного соединения платы контроллера с НГМД, наличие на­пряжений питания +5 В и +12 В в НГМД.

Максимально используйте звуковую и визуальную инди­кацию ошибок. Например, если ошибка появляется при за­пуске ПК, то в случае неисправного НГМД звучит один короткий сигнал и на дисплее загорается код системной ошибки:

— код 6ХХ, например: код 601 — неисправна дискета (Diskette error) или плата контроллера, кабель, дис­ковод;

— код 602 — ошибка считывания загрузочной записи (Diskette Boot Record error);

— код 606 — неисправность в конструкции дисковода или на плате контроллера НГМД;

— код 607 — диск защищен от записи, диск неправиль­но вставлен, плохой переключатель защиты диска от записи, неисправность в аналоговой части электрон­ной платы НГМД;

— код 608 — ГМД неисправен;

— код 611-613 — неисправность на плате контроллера дисковода или в кабеле данных дисковода;

— код 621-626 — неисправность в конструкции дисковода.

Если неисправность не поддается локализации, то попы­тайтесь поменять плату контроллера в системном блоке на аналогичную заведомо исправную и повторите загрузку. Если снова неудача, значит неисправен блок самого дисковода с его электронной платой. При наличии аналогичного диско­вода замените его электронную плату на новую и проверьте работоспособность дисковода.

Если снова неудача, значит, неисправна электромехани­ческая часть конструкции дисковода, а именно, неисправен привод дисковода, шаговый двигатель перемещения ГЧЗ, не функционирует индексный датчик, авария ГЧЗ, сбита юс­тировка ГЧЗ и т. п.

Кстати, нарушения юстировки ГЧЗ встречаются доволь­но часто. Пользователь ПК должен умело использовать су­ществующие программные средства диагностики дисководов, которые могут достаточно быстро локализовать неисправ­ность. После локализации неисправной платы или узла поль­зователь может приступить к их ремонту.

Для облегчения проведения диагностики НГМД фирма Теас (Япония) предлагает проводить 15 общих проверок, из них первые четыре — механические, а остальные электрон­ные.

Необходимо отметить, что во всех дисководах для диаг­ностики имеется набор контрольных точек. Например, в дисководах фирмы Теас типа FD-55BR/FR/GR имеется 8 контрольных точек, а именно:

1. ТР1— INDEX — проверка индексного сигнала,

2. ТР2— Erase gate delay — задержка сигнала стирания,

3. ТРЗ— TRACK ОО — сигналы индекса нулевой дорж-ки,

4. ТР4— Рге-АМР — сигналы усилителя записи 1-й сто­роны,

5. ТР5— Рге-АМР — усилитель записи 2-й стороны дис­кеты,'

6. ТР6— DC О — сигналы нулевой дорожки,

7. ТР7— DIF.AMP — сигналы усилителя считывания 1-й стороны,

8. ТР8— DIF.AMP — сигналы усилителя считывания 2-й стороны.Иногда НГМД считывает информацию только с тех дис­кет, которые предварительно были на нем отформатированы. Причиной этого может быть следующее:

• нарушена юстировка блока магнитных головок,

• смещен датчик нулевой дорожки,

• изменилась скорость вращения привода диска,

• неисправен кварц задающего генератора контроллера НГМД.


5. Сетевые платы, причины отказов сетевых плат

Наиболее распространенные отказы сетевых плат связаны с:

• превышением допустимого напряжения питания;

• воздействием статических разрядов;

• повреждением последовательных и параллельных пор­тов.

Отказы плат расширения в большинстве случаев являют­ся следствием:

• воздействия статических разрядов;

• превышения напряжения на входах;

• перегрузки выходов по току;

• неправильной эксплуатации устройств на основе КМПО, связанной с нарушением последовательности подачи питающих напряжений;

• особого внимания требует к сетевым платам проверка «разводки» кабелей. Ошибка в разводке кабеля может привести к выходу из строя как платы, так и дорогос­тоящего компьютера;

• Одновременный отказ нескольких компонентов. Веро­ятность случайного отказа даже одного компонента является очень небольшой. Поэтому одновременный выход из строя нескольких компонентов на плате дол­жен быть однозначным сигналом пользователю тща­тельным образом искать собственные ошибки;

• Проверка «мертвых» плат. Для проверки полностью вышедших из строя плат существует простой, но чрез­вычайно эффективный тест, выявляющий причины, связанные с перегрузкой по напряжению питания, ошибкой в его полярности или другой «силовой» ситуацией. Для начала нужно полностью отсоединить проверяемую плату системного блока. Далее, исполь­зуя обычный цифровой измеритель сопротивления на пределе 2000 Ом, нужно измерить сопротивление меж­ду шинами «питание» и «земля». Запишите получен­ное значение. Поменяв местами щупы прибора, из­мерьте обратное сопротивление. Если соотношение со­противлений 21 и больше, весьма вероятно, что имела место перегрузка по питанию. Наиболее распростра­ненная причина — ошибка в полярности питания при подключении;

Другие признаки перегрузки по напряжению. При пре­вышении номинального значения напряжения ИС обычно выходят из строя в следующем порядке: про­граммируемые логические матрицы, ПЗУ и микросхе­мы СБИС. При этом температура корпуса вышедшей из строя ИС значительно увеличена. Обычно в этом случае перегревается только одна ИС; Последовательность подачи напряжения питания. Ос­новная причина выхода из строя ИС ввода-вывода за­ключается в подаче сигналов на вход ПК при отключен­ном напряжении питания. Подключение сигнала +5 В на вход обычной ТТЛ микросхемы, если питание на нее не подано, не вызывает никаких нежелательных послед­ствий. Иначе обстоит дело с ИМС КМОП; В такой ситуации из1за конструктивных особенностей входных элементов КМОП логики происходит проте­кание тока через этот вход на общую шину питания всей платы. Поскольку большинство входов рассчитано на ток до 25 мА, в этом случае часто происходит по­вреждение входной ИС;

Отказы при подаче напряжения питания. Даже в опи­санной ситуации не происходит разрушения входа (входной ток мог быть ограничен), ИС может быть раз­рушена при последующей подаче питания. Это проис­ходит вследствие того, что входной ток смещает эле­менты ИС таким образом, что они начинают действо­вать как прямо смещенные диоды при подаче напряжения питания. Эта причина является типичной при отказах ИС последовательных интерфейсов;

Отказы последовательных и параллельных интерфейсов. Иногда пользователи подключают устройства к после­довательным или параллельным портам включенного ПК. Это может вызвать отказ, упомянутый в разделе «Отказы при подаче напряжения питания». Однако даже при подключении вышеупомянутых устройств к ПК с выключенным питанием возможен другой меха­низм отказа. Некоторые устройства, подключенные через последовательный интерфейс, и принтеры не имеют соединения с единой цепью силового заземле­ния. Ток утечки может привести к появлению на пос­ледовательном или параллельном портах сигналов на 20—40 В выше уровня «земли» ПК, что станет при­чиной их выхода из строя. Если контакт заземления соединится первым, это не вызовет осложнений, но и не явится гарантией от проблем. Отсюда следует одно из главных правил эксплуатации: никогда не следует производить каких-либо подключений не полностью обесточенной аппаратуры к ПК; «Горячее» подключение.

Установка сетевых плат в системный блок при подклю­чении питания обычно не приводит к выходу платы из строя. Тем не менее ни в коем случае не делайте это­го! Плата может быть повреждена, если во время ус­тановки контакты соединяются в неправильной после­довательности. При этом обычно повреждаются ИС шинных буферов и они пробиваются при подаче напря­жения. Это является одним из наиболее распростра­ненных отказов плат расширения; Чрезмерно длинные сигнальные провода. Еще одним источником отказа, который был выявлен недавно, являются чрезмерно длинные провода на цифровых входах. Длинные провода работают как ан­тенны, которые принимают помехи. В них также мо­гут проявляться эффекты, аналогичные несогласован­ной линии связи. При подключении к ним сигналов 5 В появляются переходные импульсы. Иногда наблю­даются субмикросекундные импульсы амплитудой 8 В и больше. В таких случаях рекомендуется подключить конденсатор, например емкостью 0,1 мкФ, параллель-

но входным контактам. Это также устранит радиопо­мехи и другие высокочастотные наводки.


6. Ремонт блоков питания ПК

Какова вероятность отказа блока питания ПК при частом включении и выключении ПК? Блоки питания ПК чаще все­го выходят из стоя при включении ПК из-за резонансных яв­лений, вызывающих перегрузку выходных и входных цепей блока питания. Поэтому частое включение и выключение ПК неблагоприятно сказывается на его надежности в работе.

На надежность работы компьютера влияют также помехи в цепях электропитания. Для нормальной работы ПК необ­ходимо, чтобы напряжение сети питания было достаточно стабильным, а уровень помех в сети не должен превышать определенной величины. При выборе места и способа под­ключения ПК к электросети необходимо учитывать следую­щие требования:

• По возможности включайте ПК к отдельным линиям электропитания со своими защитными автоматами.

• Проверьте сопротивление шины заземления (оно дол­жно быть доли Ома).

• Убедитесь в отсутствии помех, бросков и провалов напряжения питания.

• Уровень помех в электросети возрастает при увеличе­нии внутреннего сопротивления линии электропита­ния. Не пользуйтесь без крайней необходимости уд­линителями.

• Не подключайте к одной розетке ПК и другую быто­вую технику (холодильник, телевизор, СВЧ-печь, пылесос, кондиционер и т. д.).

Блок питания (БП) обычно рассчитан на работу в сети переменного тока 115-127 В и 220-240 В и имеет мощность 150-400 Вт. Он размещается внутри системного блока справа от системной платы в большом металлическом корпусе и подключается к ней с помощью многожильного кабеля.

Для подачи питания +5 и +12 В на НЖМД и НГМД в нем предусмотрен набор четырехжильных кабелей.

Следует помнить, что распайка разъема БП, подключае­мого к системной плате, не во всех ПК одинакова. На заднейпанели БП имеется переключатель напряжения электропи­тания.

Пользователи ПК! Перед тем как включать компьютер первый раз, не забудьте проверить положение этого переклю­чателя!

Кабель сетевого питания ПК подсоединяется к разъему на задней стенке БП, на которой, как правило, также имеет­ся гнездо для подключения кабеля питания дисплея.


Лучше не ремонтировать?..

Если при эксплуатации компьютера в летнее время про­исходит перегрев БП и его отключение из-за перегрузки, обеспечьте дополнительное охлаждение ПК. Во избежание нарушений оптимальной циркуляции воздуха внутри систем­ного блока проверьте наличие всех заглушек на задней па­нели ПК.

Износ БП определяется временем его непрерывной рабо­ты. В зависимости от конструкции, мощности, схемотех­нических решений и эффективности вентиляции срок служ­бы БП составляет 3—7 лет. При выходе БП из строя ПК ста­новится полностью неработоспосособным. Чтобы продлить время безотказной работы БП и самого ПК, необходимо использовать сетевые фильтры, стабилизаторы напряжения или источники бесперебойного питания.

Большинство блоков питания для ПК являются импуль­сными. По сравнению с линейными источниками питания они имеют меньшие габариты и вес, большие КПД и коэф­фициенты стабилизации по току и напряжению. Стандарт­ный импульсный БП включает в себя сетевой фильтр, вып­рямитель, мощные ключевые транзисторы (МКТ), схему управления МКТ, работающую по принципу широтно-им-пульсного (ШИМ) генератора, схему обратной связи, со­единенную с датчиками во вторичных цепях источника, вы­ходные стабилизаторы напряжения +5 и +12 В.

Допустим, блок питания вашего ПК вышел из строя. Что делать?

Постарайтесь заменить его целиком. Подберите источник в том же конструктиве, той же мощности (указана на кор­пусе) и с той же распайкой разъемов.


Приступаем к ремонту блока питания!

При отсутствии резервного БП приступайте к ремонту. Соблюдайте осторожность — на БП подается напряжение электросети. Прежде чем включить вынутый из ПК блок питания, к выводам +5 и + 12 В обязательно подключите балластные резисторы (в целях предотвращения выхода его из строя).

Все неисправности БП в зависимости от причины их воз­никновения можно подразделить на два класса:

• вызванные внешними помехами в сети электропитания и нагрузками, параллельными ПК;

• вызванные внутренними нагрузками, замыканиями или естественным износом БП.

Типовые неисправности блоков питания ПК приведены в табл. 17.

В блоке питания имеется несколько подстроечных рези­сторов, имеющих следующие назначение :

• регулятор ШИМ (амплитуда выходых напряжений блока);

• уровень срабатывания защиты;

• регуляторы напряжения линейных стабилизаторов.