«Вклад Ф. Виета в развитие алгебраической символики»

Вид материалаИсследовательская работа

Содержание


2. Алгебра Диофанта
3. Алгебра индусов
4. Алгебра арабов
5. Развитие алгебры в Европе
Леонардо Пизанский
Иордан Неморарий
Лука Пачоли
2. Символика Виета и его вклад в развитие алгебры
2. 2. Символика Ф. Виета
N – первая степень, Q
3. Математические достижения Ф. Виета
2. 4. Последователи Ф. Виета
3. Развитие алгебраической символики на современном этапе
Подобный материал:

Департамент образования Владимирской области муниципальное общеобразовательное учреждение средняя общеобразовательная школа № 14 г. Владимира

Исследовательская работа на тему:

«Вклад Ф. Виета в развитие алгебраической символики»




Автор работы: Колесова Алена Алексеевна, ученица 8 «В» класса МОУ СОШ № 14 г. Владимира Руководитель: Грехова Екатерина Александровна, учитель математики МОУ СОШ № 14 г. Владимира







Владимир 2010




Оглавление

Введение ………………………………………………………………………3
  1. Предпосылки рождения алгебраической символики
  1. 1. Алгебра греков………………………………………………..6
  1. 2. Алгебра Диофанта…………………………………………….8
  1. 3. Алгебра индусов……………………………………………...9
  1. 4. Алгебра арабов………………………………………………11
  1. 5. Развитие алгебры в Европе…………………………………13
  2. Символика Ф. Виета и его вклад в развитие алгебры

2.1. Математика в жизни Ф. Виета …………………………….....16

2. 2. Символика Ф. Виета ………………………………………....21

2. 3. Математические достижения Ф. Виета …………………….24

2. 4. Последователи Ф. Виета …………………………..………....26
  1. Развитие алгебраической символики на современном этапе……....28

Заключение………………………………………………………………...…30

Библиографический список ……………………………………………...…32


Введение

«… Искусство, которое я излагаю,

ново или по крайней мере было настолько

испорчено временем и искажено влиянием

варваров, что я счёл нужным придать ему

совершенно новый вид…»

Ф. Виет

В 2010 году исполняется 470 лет со дня рождения замечательного французского математика, положившего начало алгебре как науке о преобразовании выражений, создателя буквенного исчисления, Франсуа Виета.

Наука прошла большой и сложный путь развития — от египетских и вавилонских памятников до атомных электростанций, лазеров и космических полётов. Человечество прошло и проходит длительный и трудный путь от незнания к знанию, непрерывно заменяя на этом пути неполное и несовершенное знание всё более полным и совершенным.

Обычно принято говорить о преемственности в науке. Без Диофанта и Франсуа Виета не было бы Декарта, без Декарта не было бы Ньютона, без Евклида и Архимеда не было бы Ньютона, без Ньютона не было бы Эйлера и т. д. В общем, такое утверждение верно. По существу каждый исследователь должен быть осведомлён о том, что сделано до него в изучаемом им вопросе, критически оценить результаты, полученные его предшественниками.

Невозможно представить себе математику без специальных обозначений и формул. Мы настолько привыкли к ним, что порой не можем доказать, не прибегая к символам, простейшие тождества. Создателем алгебраической символики по праву считается французский математик Франсуа Виет. Хотя его символика обладала некоторыми недостатками, но, тем не менее, это был огромный шаг вперёд. А вот древние математики вполне обходились без буквенных обозначений и специальных правил оперирования с ними. Поэтому, мы считаем, что будет, полезно вернуться назад и посмотреть, как появились первые математические знаки. Мы также считаем, что символика не могла возникнуть сама по себе, поэтому при проведении исследовательской работы мы решили выяснить, каковы предпосылки рождения алгебраической символики Виета.

Франсуа Виет сам не считал себя математиком. Он говорил, что занимается математикой в свободное время для собственного удовольствия. При этом, будучи состоятельным человеком, свои труды он за свой счет издавал и рассылал ученым во все уголки Европы. В историю Франсуа Виет вошел как выдающийся математик, автор многих эпохальных научных открытий.

Виет показал, что, оперируя с символами, можно получить результат, который применим к любым соответствующим величинам, т. е. решить задачу в общем виде. Это положило начало коренному перелому в развитии алгебры: стало возможным буквенное исчисление. На наш взгляд открытие буквенного исчисления – открытие мирового уровня и оно не могло остаться без внимания современников Виета и будущих поколений. Поэтому мы считаем, что важно выяснить, кто были последователи Виета, и какой вклад они внесли в развитие алгебраической символики. Также необходимо выяснить, возможно, ли дальнейшее развитие алгебраической символики, если да – то в каких областях математики, а возможно и смежных с ней наук.

Гипотеза исследования:

Если создание алгебраической символики – это открытие мирового уровня, то оно должно развиваться, совершенствоваться и являться основой для дальнейшего развития математики и смежных с ней наук.

Цель исследования:

Установить важность создания алгебраической символики для развития науки на современном этапе.

Задачи исследования:

1. Охарактеризовать различные этапы развития алгебры до Ф. Виета с целью выявления предпосылок для создания буквенного исчисления.

2. Оценить вклад Ф. Виета в развитие алгебраической символики.

3. Оценить вклад последователей Виета в развитие алгебраической символики.

4. Выявить, возможно, ли дальнейшее развитие алгебраической символики.

Актуальность темы:

Выбранная тема актуальна, потому что на современном этапе развития общества мы не можем представить себе математику без формул и математических символов. Бурно развивающаяся математика наших дней, конечно, использует идеи и методы, во много раз превосходящие по глубине и общности идеи и методы, которые развивал Виет. Но и сейчас для нас интересна и ценна острая алгебраическая мысль Виета, который широко распахнул перед математикой двери в новый мир современной алгебры. Не будем забывать, что в ее основе лежит буквенное исчисление Франсуа Виета.


1. Предпосылки рождения алгебраической символики

1.1. Алгебра греков

Считается, что эллины заимствовали первые сведения по алгебре у вавилонян. Греческий философ-неоплатоник Прокл Диадох отмечал в своем сочинении: «Согласно большинству мнений, геометрия была впервые открыта в Египте, имела свое происхождение в измерении площадей». Воздействие традиций вавилонской алгебры на математику Древней Греции и алгебраическую школу стран ислама подчеркивается в «Истории математики». Создание основ математики в том виде, к которому мы привыкли при изучении этой науки в школе, выпало на долю греков и относится к VI—V векам до нашей эры. Античная наука достигла вершины в работах Евклида, Архимеда, Аполлония.

В древнейших египетских источниках  папирусе Райнда и Московском папирусе  - находим задачи на «аха» (термин «аха» означает «куча», «груда»). Имеется в виду некоторое количество, неизвестная величина, подлежащая определению, соответствующие современным линейным урав­нениям, а также квадратным вида ах2 = b. В вавилон­ских клинописных текстах имеется большое число задач, решаемых с помощью уравнений и систем первой и второй степеней, которые записаны без символов, но в специфической терминологии. В этих текстах решаются задачи, при­водящие к трехчленным квадратным уравнениям вида ах2 - bх = с или х2 - рх = q. В задачах на «аха» можно обнаружить зачатки алгебры как науки о решении урав­нений.

Но если вавилоняне за два тысячелетия до нашей эры умели числовым путем решать задачи, связанные с урав­нениями первой и второй степеней, то развитие алгебры в трудах Евклида (365 - ок. 300 гг. до н. э.), Архимеда (287-212 гг. до н. э.) и Аполлония (ок. 260-170 гг. до н. э.) носило совершенно иной характер: греки опериро­вали отрезками, площадями, объемами, а не числами. Их алгебра строилась на основе геометрии и выросла из проблем геометрии. В XIX в. совокупность приемов древних получила название геометрической алгебры.

С помощью геометрии древним удавалось также до­казывать многие алгебраические тождества. Но каковы эти доказательства! Они безупречны в отношении логики и слишком громоздки. Вот как формулирует Евклид тео­рему, выражающую  тождество (а + b)2 = a2 + 2аb + b2. Если отрезок (ab) разделен в точке (g) на два отрезка, то квадрат, построенный на (ab), равен двум квадратам на отрезках (ag, gb) вместе с удвоенным прямоугольником на (ag, gb).

Естественно, связывая число с геометрическим образом (линией, поверхностью, телом), древние оперировали только однородными вели­чинами; так, равенство было возможно для величин оди­накового измерения.

Такое построение математики позволило античным уче­ным достигнуть существенных результатов в обоснова­нии теорем и правил алгебры, но в дальнейшем оно стало сковывать развитие науки.

Приведенные примеры могут создать ощущение, что математика древних греков примитивна. Но это не так: созданная ими математика по своему идейному содержа­нию глубока и питала идеями и методами математику вплоть до XVII в. - века научной революции; многие идеи древних получили дальнейшее развитие в новой матема­тике, созданной усилиями выдающихся умов XVI—XVII вв.

Накопленные в странах Древнего Востока знания со­стояли из набора разрозненных математических фактов, рецептур для решения некоторых конкретных задач и не могли обладать достаточной строгостью и достоверностью. Создание основ математики в том виде, к которому мы при­выкли при изучении этой науки в школе, выпало на долю греков и относится к VI—V вв. до н. э. С этого времени начала развиваться дедуктивная математика, построенная на строгих логических доказательствах.
  1. 2. Алгебра Диофанта

Новый подъем античной математики относится к III в. н. э., он связан с творчеством великого математика Диофанта. Диофант возродил и развил числовую алгебру вавилонян, освободив ее от геометрических построений, которыми пользовались греки.

У Диофанта впервые появляется буквенная символика. Он ввел обозначения: неизвестной z,  квадрата d), куба c, четвертой dd (квадратоквадрат), пятой dc (квадратокуб) и шестой степеней ее, а также первых шести отрицательных степеней, т. е. рассматривал, величины, записываемые нами в виде x6, x5, x4, x3, x2, x, x-1, x-2, x-3, x-4, x-5,  x-6. Диофант применял знак равенства (символ i) и знак  для обозначения вычитания.

Диофант сформулировал правила алгебраических опeраций со степенями неизвестной, соответствующие нашим умножению и делению степеней с натуральными показателями (для m + n 6), и правила знаков при умножении. Это  дало возможность компактно записывать многочлены, производить умножение их, оперировать с уравнениями. Он указал также правила переноса отрицательных членов уравнения в другую часть его с обратными заиками, взаимного уничтожения одинаковых членов в обеих частях уравнения.

«Арифметика» посвящена проблеме решения неопределенных уравнений. И хотя Диофант считает число собранием (а это означает, что рассматриваются только натуральные числа), при решении неопределенных урав­нений он не ограничивается натуральными числами, а отыскивает и положительные рациональные решения.

Неопределенными уравнениями до Диофанта занима­лись математики школы Пифагора в связи с пифагоровой теоремой. Они искали тройки целых положительных чи­сел, удовлетворяющих уравнению x2 + y2 = z2.

Диофант поставил задачу установить разрешимость (в рациональных числах) и в случае разрешимости найти рациональные решения уравнения F (х, у) = 0, где левая часть – многочлен с целыми или рациональ­ными коэффициентами. Он исследовал неопределенные уравнения второй, третьей и четвертой степеней и системы неопределенных уравнений. 

 Методы Диофанта впоследствии применяли и развива­ли арабские ученые, Виет (1540—1603), Ферма, Эйлер (1707—1783), Якоби (1804—1851), Пуанкаре (1854—1912).

Оценивая творчество Диофанта, Цейтен отмечает су­щественную деталь: «Наконец, мы желаем здесь вкратце указать на важную роль, сыгранную впоследствии сочи­нениями Диофанта. Благодаря тому, что определенные уравнения первой и второй степени были облечены у него в численную оболочку они оказались гораздо более доступными для людей, не посвященных еще в культуру греческой математики; более доступными, чем те абст­рактные геометрические формы, которые принимают у Евклида уравнения второй степени и которые мы встре­чаем в сохранившихся до нас трудах других геометров для выражения уравнений первых двух степеней. Поэтому Диофант и явился главным посредником в процессе ус­воения греческой алгебры арабами, благодаря которым, в свою очередь она проникла в Европу в эпоху возрож­дения наук».
  1. 3. Алгебра индусов

Начиная с V в. центр математической культуры пере­местился на восток - к индусам и арабам. Математика индусов резко отличалась от математики греков она была числовой. Индусы не были озабочены строгостью эллинов в доказательствах и обосновании геометрии. Они довольствовались чертежами, на которых у греков осно­вывалось доказательство, сопровождая их указанием: «Смотри!». Предполагается, что благодаря числовым выкладкам и практическому эм­пиризму индусам удалось постичь теоремы и методы греков, теоретического обоснования которых они, возможно, по-настоящему не понимали.

Основные достижения индусов состоят в том, что они ввели в обращение цифры, называемые нами арабскими, и позиционную систему записи чисел, обнаружили двойственность корней квадратного уравнения, двузначность квадратного корня и ввели отрицательные числа.

Индусы рассматривали числа безотносительно к гео­метрии. В этом их алгебра имеет сходство с алгеброй Дио­фанта. Они распространили правила действия над рацио­нальными числами на числа иррациональные, производя над ними непосредственные выкладки, а не прибегая к построениям, как это делали греки. Например, им было известно, что



Греки, не знавшие отрицательных чисел, решая уравнения, преобразовывали их так, чтобы обе части уравнения при значении неизвестной, удовлетворяющей этому урав­нению, были положительными. Если этого не происходи­ло, то менялись условия задачи. Индусы в аналогичных ситуациях не были стеснены в своих действиях: они либо отбрасывали получающиеся отрицательные решения, ли­бо интерпретировали их как долг, задолженность. Отсю­да сделан был естественный шаг к установлению правил действий над величинами при любом выборе знаков этих величин, а также к выявлению наличия двух корней у квадратных уравнений и двузначности квадратного кор­ня.

Индусами был сделан шаг вперед по сравнению с Дио­фантом и в совершенствовании алгебраической символики: они ввели обозначения нескольких различных неизвест­ных и их степеней, которые были, как у Диофанта, по сути дела сокращениями слов. Кроме того, они искали ре­шения неопределенных уравнений не в рациональных, а в целых числах.


  1. 4. Алгебра арабов

Дальнейшее развитие математика получила у арабов, завоевавших в VII в. Переднюю Азию, Северную Африку и Испанию. Создались благоприятные условия для слия­ния двух культур – восточной и западной, для усвое­ния арабами богатого математического наследия эллинов и индусской арифметики и алгебры.

Но еще до того как началось усиленное изучение ара­бами трудов древних математиков, в 820 г., вышел трак­тат по алгебре «Краткая книга об исчислении ал-джабра и ал-мукабалы» Мухаммеда ибн Муса ал-Хорезми (т. е. из Хорезма, 787 – ок. 850г. н. э.), где давались числовое и геометрическое решения уравнений первой и второй степеней.

 Название трактата соответствует операциям при решении уравнений: «ал-джабр» (восстанавливать) озна­чает восстановление отрицательного члена в одной части уравнения в виде положительного в другой. Например, преобразовав уравнение 2 + Зх - 2 = 2х к виду 2 + Зх = 2х + 2, мы произвели операцию ал-джабр.

 «Ал-мукабала» означает сопоставление подобных членов, приведение их к одному; в нашем уравнении подобные члены и , поэтому получим 2x2 + x = 2.

Модификация слова ал-джабр породила более позднее алгебра. Аналогично, слово алгорифм (алгоритм) про­изошло от ал-Хорезми.

Таким образом, действия "аль-джебр" и "алмукабала" заменили собой применяющийся ныне перенос членов уравнения из одной части уравнения в другую и приведение подобных членов. Эти две операции позволили ал-Хорезми приводить всякое алгебраическое уравнение первой и второй степени к каноническим формам, которых у ал-Хорезми шесть.

В отличие от греков, которые, разумеется, тоже решали квадратные уравнения, но решали чисто геометрическим путём, ал-Хорезми чертежом пользуется лишь для пояснения справедливости своего риторического решения. Он может решить любое квадратное уравнение по его общему правилу (найти положительные корни). Если у греков было именно геометрическое решение, то метод ал-Хорезми - почти алгебраический. И это колоссальный шаг вперед по сравнению с геометрической алгеброй греков; от него остается один шаг (правда, длиной в добрых семь с лишним веков) к алгебре символической, алгебре Виета. В своем арифметическом трактате ал-Хорезми в основном следовал индийским образцам, и именно через него европейцы познакомились с индийскими методами записи чисел, то есть с употреблением нуля и с поместным значением цифр. Алгебраический же трактат отличался от работ, как индийских математиков, так и греческих. Можно полагать, что в этой книге ал-Хорезми следовал местным традициям и собственным результатам. Если большинство греков не видело необходимости в приложении научных знаний к практическим потребностям, то главным желанием ал-Хорезми было поставить науку на службу человечеству, приспособить ее к практическим целям. Алгебра ал-Хорезми имеет раздел о торговле и торговых сделках, с задачами на тройное Правило.

Таким образом, впервые в истории математики в трактате ал-Хорезми появились общие правила решения квадратные уравнений. Но потребовались еще сотни лет, чтобы им придать общепринятую сейчас форму.


  1. 5. Развитие алгебры в Европе

Каково же было состояние математики в это время в Европе. Об этом наука располагает крайне скудными сведениями.

В XII – XIII вв. в Европе интенсивно переводились в арабского языка как труды самих арабов, так и работы древних греков, переведенные на арабский язык.

Первым европейским математиком, которому удалось осветить многие вопросы и внести в математику свой вклад, был Леонардо Пизанский (Фибоначчи, 1180–1240), написавший «Книгу абака». В ней рассмотрены различные задачи, указаны методы их решения, причем арифметика и алгебра линейных и квадратных уравнений изложены с небывалой до этого времени точностью и полнотой.

Существо задачи Леонардо излагает словесно; неизвестную он называет res (вещь) или radix (корень); квадрат неизвестной – census (имущество) или quadratus (квадрат); данное число – numerus. Все это латинские пероводы соответствующих латинских слов.

Современник Леонардо, Иордан Неморарий (XIII в), употреблял буквенные обозначения более систематично и решал задачи с применением линейных и квадратных уравнений, сначала в общем виде, а затем иллюстрировал  их числовыми примерами.

Французский епископ Николь Орем (1323-1382) рассматривал «дробно – рациональные отношения», соответствующе современным степеням a½, a¼, a3/2 и т.д., сформулировал правила операций с этими отношениями типа ,   ,     ,        ,      

Орем вплотную подошел к понятию иррационального показателя. Он доказал расходимость гармонического ряда 1 + +++…

Выдающимся алгебраистом своего времени стал мо­нах-францисканец Лука Пачоли (ок. 1445 – ок.1514) близкий друг Леонардо да Винчи, работав­ший профессором Математики в университетах и различ­ных учебных заведениях Рима, Болоньи, Неаполя, Фло­ренции, Милана и других городов.

Он ввел «алгебраические буквы» (caratterialgebraici), дал обозначения квадратному и кубическому корням, корню четвертой степени; неизвестную х он обозначал со (cosa – вещь), х2се (censo - квадрат, от латинского census), х3cu (cubo), x4 – се. се. (censo de censo), x5 – р°г° (primo relato – «первое  relato»,  x6 – р°г° х – се. cu. (censo de «второе  relato»), х8 – ce. ce. ce. (de censo), x9 – cu. cu. (cubo de cubo),  x10 – ce. p°r° (censo de primo relato), x13 – 3°r° (tersio relato - «третье relato») и т. д.; свободный член уравнения – (numero – число). Как видим, некоторые степени Пачоли получал мультипликативным способом с по­мощью показателей 2 и 3 (х4 = х2×2 , х6 = х2×3, х9 = х3×3 и т. д.), а в случаях, когда так не получалось, пользовался словом relato (например, при образовании х5, х7, х11 и т. д.). Специальными символами Пачоли обозначил вто­рую неизвестную и ее степени. Для обозначения операции сложения он воспользовался знаком  (plus – больше), для обозначения вычитания – знаком  (minus – мень­ше). Он сформулировал правила умножения чисел, перед которыми стоят знаки и .

Некоторый шаг в совершенствовании алгебраической символики сделал бакалавр медицины Н. Шюке (ум. ок. 1500 г.), который в книге «Наука о числах в трех час­тях» изложил правила действий с рациональными и иррациональными числами и теорию уравнений. Для сло­жения и вычитания он вслед за Пачоли пользовался зна­ками  и , причем, знак  служил и для обозначения от­рицательного числа. Неизвестную величину он называл premier («первое число»), а ее степени – вторыми, третьи­ми и т. д, числами. Записи степеней неизвестной у Шюке лаконичны.

Значительного успеха в совершенствовании «алгебраических букв» Луки Пачоли достигли немецкие алгебраисты – «коссисты». Они вместо  и ввели знаки + и , знаки для неизвестной, и ее степеней, свободного члена.

XVI в. в алгебре ознаменовался величайшим открытием – решением в общем виде уравнений третьей и четвертой степеней.

Чтобы получить представление о символике Кардано, приведем пример записи корня кубического уравнения x3+6x=20. Выражение  записывалось так Rx.u.cu.Rx.10810½Rx.u.cu.Rx.10810.

Здесь Rx – знак корня (Radix), Rx.u.cu означает корень кубический из всего выражения до вертикальной черты или после нее,  и - сокращения слов  plus и minus.

Кардано показал, что легко можно решить уравнение x4ax = bx2 + . Он привел его к виду x4 = b(x)2, а затем извлечением корня получил квадратное уравнение. Аналогично он рассматривал и некоторые другие виды уравнений. Однако уравнение x4 + 6x2 + 36 = 60x, предложенное да Кои Кардано не сумел решить.

Открытия, сделанные итальянцами в алгебре и систематически изложенные Кардано, стали доступны математикам других стран и дали импульс развитию науки.

Дальнейшее развитие алгебры было связано с совершенствованием символики и разработкой общих методов решения уравнений.       В этом преуспел Франсуа Виета.


2. Символика Виета и его вклад в развитие алгебры

2. 1. Математика в жизни Ф. Виета

Франсуа Виет — замечательный французский математик, положивший начало алгебре как науке о преобразовании выражений, о решении уравнений в общем виде, создатель буквенного исчисления.

Виет первым стал обозначать буквами не только неизвестные, но и данные величины. Тем самым ему удалось внедрить в науку великую мысль о возможности выполнять алгебраические преобразования над символами, т. е. ввести понятие математической формулы. Этим он внёс решающий вклад в создание буквенной алгебры, чем завершил развитие математики эпохи Возрождения и подготовил почву для появления результатов Ферма, Декарта, Ньютона.

Франсуа Виет родился в 1540 году на юге Франции в небольшом городке Фантене-ле-Конт, что находится в 60 км от Ла-Рошели, бывшей в то время оплотом французских протестантов-гугенотов. Большую часть жизни он прожил рядом с виднейшими руководителями этого движения, хотя сам оставался католиком. По-видимому, религиозные разногласия учёного не волновали.

Отец Виета был прокурором. По традиции, сын выбрал профессию отца и стал юристом, окончив университет в Пуату. В 1560 году двадцатилетний адвокат начал свою карьеру в родном городе, но через три года перешёл на службу в знатную гугенотскую семью де Партене. Он стал секретарём хозяина дома и учителем его дочери двенадцатилетней Екатерины. Именно преподавание пробудило в молодом юристе интерес к математике.

Когда ученица выросла и вышла замуж, Виет не расстался с её семьёй и переехал с нею в Париж, где ему было легче узнать о достижениях ведущих математиков Европы. С некоторыми учёными Виет познакомился лично. Так, он общался с видным профессором Сорбонны Рамусом, с крупнейшим математиком Италии Рафаэлем Бомбелли вёл дружескую переписку.

В 1571 году Виет перешёл на государственную службу, став советником парламента, а затем советником короля Франции Генриха III.

В ночь на 24 августа 1572 года в Париже произошла Варфоломеевская ночь. В ту ночь вместе со многими гугенотами погибли муж Екатерины де Партене и математик Рамус. Во Франции началась гражданская война. Через несколько лет Екатерина де Партене снова вышла замуж. На сей раз её избранником стал один из видных руководителей гугенотов — принц де Роган. По его ходатайству в 1580 году Генрих III назначил Виета на важный государственный пост рекетмейстера, который давал право контролировать от имени короля выполнение распоряжений в стране и приостанавливать приказы крупных феодалов.

Находясь на государственной службе, Виет оставался учёным. Он прославился тем, что сумел расшифровать код перехваченной переписки короля Испании с его представителями в Нидерландах, благодаря чему король Франции был полностью в курсе действий своих противников. Код был сложным, содержал до 600 различных знаков, которые периодически менялись. Испанцы не могли поверить, что его расшифровали, и обвинили французского короля в связях с нечистой силой.

К этому времени относятся свидетельства современников Виета о его огромной трудоспособности. Будучи чем-то увлечён, учёный мог работать по трое суток без сна.

В 1584 году по настоянию Гизов Виета отстранили от должности и выслали из Парижа. Именно на этот период приходится пик его творчества. Обретя неожиданный покой и отдых, учёный поставил своей целью создание всеобъемлющей математики, позволяющей решать любые задачи. У него сложилось убеждение в том, «что должна существовать общая, неизвестная ещё наука, обнимающая и остроумные измышления новейших алгебраистов, и глубокие геометрические изыскания древних».

Виет изложил программу своих исследований и перечислил трактаты, объединённые общим замыслом и написанные на математическом языке новой буквенной алгебры, в изданном в 1591 году знаменитом «Введении в аналитическое искусство». Перечисление шло в том порядке, в каком эти труды должны были издаваться, чтобы составить единое целое — новое направление в науке. К сожалению, единого целого не получилось. Трактаты публиковались в совершенно случайном порядке, и многие увидели свет только после смерти Виета. Один из трактатов вообще не найден. Однако главный замысел учёного замечательно удался: началось преобразование алгебры в мощное математическое исчисление. Само название «алгебра» Виет в своих трудах заменил словами «аналитическое искусство». Он писал в письме к де Партене: «Все математики знали, что под алгеброй и алмукабалой… скрыты несравненные сокровища, но не умели их найти. Задачи, которые они считали наиболее трудными, совершенно легко решаются десятками с помощью нашего искусства…»

Основу своего подхода Виет называл видовой логистикой. Следуя примеру древних, он чётко разграничивал числа, величины и отношения, собрав их в некую систему «видов». В эту систему входили, например, переменные, их корни, квадраты, кубы и т. д., а также множество скаляров, которым соответствовали реальные размеры — длина, площадь или объём. Для этих видов Виет дал специальную символику, обозначив их прописными буквами латинского алфавита. Для неизвестных величин применялись гласные буквы, для переменных — согласные.

Виет показал, что, оперируя с символами, можно получить результат, который применим к любым соответствующим величинам, т. е. решить задачу в общем виде. Это положило начало коренному перелому в развитии алгебры: стало возможным буквенное исчисление.

Демонстрируя силу своего метода, учёный привёл в своих работах запас формул, которые могли быть использованы для решения конкретных задач. Из знаков действий он использовал «+» и «—», знак радикала и горизонтальную черту для деления. Произведение обозначал словом «in». Виет первым стал применять скобки, которые, правда, у него имели вид не скобок, а черты над многочленом. Но многие знаки, введённые до него, он не использовал. Так, квадрат, куб и т. д. обозначал словами или первыми буквами слов.

Знаменитая теорема, устанавливающая связь коэффициентов многочлена с его корнями, была обнародована в 1591 году. Теперь она носит имя Виета, а сам автор формулировал её так: «Если B+D, умноженное на A, минус A в квадрате равно BD, то A равно B и равно D».

Теорема Виета стала ныне самым знаменитым утверждением школьной алгебры. Теорема Виета достойна восхищения, тем более что её можно обобщить на многочлены любой степени.

Больших успехов достиг учёный и в области геометрии. Применительно к ней он сумел разработать интересные методы. В трактате «Дополнения к геометрии» он стремился создать по примеру древних некую геометрическую алгебру, используя геометрические методы для решения уравнений третьей и четвёртой степеней. Любое уравнение третьей и четвёртой степени, утверждал Виет, можно решить геометрическим методом трисекции угла или построением двух средних пропорциональных.

Математиков в течение столетий интересовал вопрос решения треугольников, так как он диктовался нуждами астрономии, архитектуры, геодезии. У Виета применявшиеся ранее методы решения треугольников приобрели более законченный вид. Так он первым явно сформулировал в словесной форме теорему косинусов, хотя положения, эквивалентные ей, эпизодически применялись с первого века до нашей эры. Известный ранее своей трудностью случай решения треугольника по двум данным сторонам и одному из противолежащих им углов получил у Виста исчерпывающий разбор. Было ясно сказано, что в этом случае решение не всегда возможно. Если же решение есть, то может быть одно или два.

Глубокое знание алгебры давало Виету большие преимущества. Причём интерес его к алгебре первоначально был вызван приложениями к тригонометрии и астрономии. «И тригонометрия, — как замечает Г. Г. Цейтен, — щедро отблагодарила алгебру за оказанную ею помощь». Не только каждое новое применение алгебры давало импульс новым исследованиям по тригонометрии, но и полученные тригонометрические результаты являлись источником важных успехов алгебры. Виету, в частности, принадлежит вывод выражений для синусов (или хорд) и косинусов кратных дуг.

В 1589 году, после убийства Генриха Гиза по приказу короля, Виет возвратился в Париж. Но в том же году Генрих III был убит монахом — приверженцем Гизов. Формально французская корона перешла к Генриху Наваррскому — главе гугенотов. Но лишь после того, как в 1593 году этот правитель принял католичество, в Париже его признали королём Генрихом IV. Так был положен конец кровавой и истребительной религиозной войне, долгое время оказывавшей влияние на жизнь каждого француза, даже вовсе не интересовавшегося ни политикой, ни религией.

Подробности жизни Виета в тот период неизвестны, что само по себе говорит о его желании оставаться в стороне от кровавых дворцовых событий. Известно только, что он перешёл на службу к Генриху IV, находился при дворе, был ответственным правительственным чиновником и пользовался огромным уважением как математик.

По преданию, посол Нидерландов сказал на приёме у короля Франции Генриха IV, что их математик ван Ромен задал математикам мира задачу. Но во Франции, видимо, нет математиков, так как среди тех, кому особо адресовался вызов, нет ни одного француза. Генрих IV ответил, что во Франции есть математик, и пригласил Виета. Знание синусов и косинусов кратных дуг дало возможность Виету решить уравнение 45-й степени, предложенное нидерландским учёным.

В последние годы жизни Виет ушёл с государственной службы, но продолжал интересоваться наукой. Известно, например, что он вступил в полемику по поводу введения нового, григорианского календаря в Европе. И даже хотел создать свой календарь.


2. 2. Символика Ф. Виета

Виет считается одним из основоположников алгебры. Но его интерес к алгебре первоначально связан с возмож­ными приложениями к тригонометрии и геометрии. А задачи тригонометрии и геометрии, в свою очередь, приво­дили Виета к важным алгебраическим обобщениям. Так было, например, с решением уравнений третьей степени в неприводимом случае и с исследованием некоторых клас­сов разрешимых алгебраических уравнений высших сте­пеней.

Свою алгебру Виет ценил очень высоко. Он не пользовался словом «алгебра», эту науку он зазывал «искусством анализа». Виет раз­личал видовую логистику и числовую логистику. Термин «логистика» озна­чает совокупность арифметических приемов вычислений, «вид» имел смысл символа.

Видовая логистика Виета после внесенных им в сим­волику усовершенствований представляла собой буквен­ное исчисление. Ее объектами служат геометрические и псевдогеометрические образы, связанные между собой раз­личными соотношениями. Виет был последователем древ­них: он оперировал такими величинами, как сторона, квадрат, куб, квадратоквадрат, квадратокуб, и т. д., образующими своеобразную лестницу скаляров. Дейст­вия над скалярами у Виета, как и у древних геометров, подчинены «закону однородности»: составленные из не­известных и известных величин уравнения должны быть однородными относительно всех их вместе взятых. Умно­жению чисел у Виета соответствует образование нового скаляра, размерность которого равна сумме размернос­тей множителей. Операция, соответствующая делению чисел, дает новую величину, размерность которой равна разности размерностей.

Виет разработал символику, в которой наравне с обоз­начением неизвестных впервые появились знаки для про­извольных величин, называемых в настоящее время параметрами. Для обозначения скаляров он предложил пользоваться прописными буквами: «искомые величины будут обозначены буквой А или другой гласной Е, I, О, U, Y, а данные – буквами B, D, G или другими сог­ласными»

Слово «коэффициент» введено Виетом. Рассматривая выражение

(А + В)2 + D(A + В),он назвал величину D, участвующую с А + В в образовании площади, longitudeciefficiens, т. е. содействующей длиной.

Из знаков Виет употреблял +, — и дробную черту. Современные скобки у него заменяла общая черта на всем выражением.

Символика Виета страдала недостатками, в некоторых отношениях она была менее совершенна, чем у его пред­шественников и современников. Виет для записи дейст­вий употреблял слова: in у него означало умножение,  aequatur заменяло знак равенства. Словами же выражались степени различных величин. Для трех низших сте­пеней он взял названия из геометрии, например, А3 на­зывал Acubus. Высшим степеням он давал геометричес­кие наименования, происходящие от низших: А9, напри­мер,— Acubo-cubo-cubus. Известная величина В пред­ставлялась как величина девятой степени записью solido-solido-solidum. Если сторона (latus) умножается на неизвестную величину, то она называется содействующей) (coefficiens) при образовании площади.

Уравнение А3 + 3ВА = D   Виет записывал так: А cubus + В planumin 43 aequaturDsolido, а уравнение ВАn –Аm+n= Z так:

В parabolain А gradum — А potestateaequaturZhomogenae (В, умноженное на градус А, минус А в степени равняется однородной Z),

Обозначения в числовой логистике выглядели проще:

N – первая степень, Q – квадрат, С – куб и т. д. Урав­нение x3 - 3x = 1 записывалось в виде 1С – 3Naequatur 1».

Неудобства символики Виета связаны и с требованием однородности. Как и древние греки, Виет считал, что сторону можно складывать только со стороной, квадрат –  с квадратом, куб – с кубом и т. д. В связи с этим возни­кал законный вопрос: имеют ли право на существование уравнения выше третьей степени, поскольку в простран­ственном мире четвертая, пятая и т. д. степени аналогов не имеют.

Для придания уравнению однородности Виет после входящих в него параметров писал planum (плоскость), solidum (тело) и т. д. Вот как выглядит в записи Виета уравнение х3 + 3В2х = 2z3:  Acubus + В plano 3 inAaequariZsolido 2.

Правило Тартальи для решения уравнения третьей степени у Виета имело вид:

.

Символики  Виета  придерживался  впоследствии П. Ферма. От «тирании» однородности просто и остро­умно сумел освободиться Декарт.

Может показаться, что Виет ввел в символику алгеб­ры совсем немного. Буквами для обозначения отрезков пользовались еще Евклид и Архимед, их успешно приме­няли Леонардо Пизанский, Иордан Неморарий, Николай Орем, Лука Пачоли, Кардано, Бомбелли и многие дру­гие математики. Но сделал существенный шаг вперед Виет. Его символика позволила не только решать кон­кретные задачи, но и находить общие закономерности и полностью обосновывать их. Это, в свою очередь, способ­ствовало выделению алгебры в самостоятельную ветвь математики, не зависящую от геометрии. «Это нововведение (обозначение буквами данных и искомых) и особенно применение буквенных коэффициентов положило начало коренному перелому в развитии алгебры: только теперь ста­ло возможным алгебраическое исчисление как система фор­мул, как оперативный алгоритм».

Преимущества символики предоставили Виету воз­можность не только получить новые результаты, но и бо­лее полно и обоснованно изложить все известное ранее. И если предшественники Виета высказывали некоторые правила, рецептуры для решений конкретных задач и ил­люстрировали их примерами, то Виет дал полное изло­жение вопросов, связанных с решением уравнений первых четырех степеней.

Виет, верный последователь древних, оперировал толь­ко рациональными положительными числами, которые он обозначал буквами. Если в результате подстановки в урав­нение значений параметров неизвестное оказывалось ир­рациональным, он давал этому случаю особое обоснова­ние.

  1. 3. Математические достижения Ф. Виета

Работы по математике писал чрезвычайно трудным языком, поэтому они не получили распространения. Труды Виета были собраны после его смерти профессором математики в Лейдене Ф. Шоотеном. В трудах Виета алгебра становится общей наукой об алгебраических уравнениях, основанной на символических обозначениях. Виет первый обозначил буквами не только неизвестные, но и данные величины, т. е. коэффициенты соответствующих уравнений. Благодаря этому стало впервые возможным выражение свойств уравнений и их корней общими формулами, и сами алгебраические выражения превратились в объекты, над которыми можно производить действия. Виет разработал единообразный прием решения уравнений 2-й, 3-й и 4-й степени и новый метод решения кубического уравнения, дал тригонометрическое решение уравнения 3-й степени в неприводимом случае, предложил различные рациональные преобразования корней, установил зависимость между корнями и коэффициентами уравнений (формулы Виета). Для приближенного решения уравнений с числовыми коэффициентами Виет предложил метод, сходный с методом, позднее разработанным И. Ньютоном. Достижения Виета в тригонометрии - полное решение задачи об определении всех элементов плоского или сферического треугольников по трем данным элементам, важные разложения sin х и cos х по степеням cos х и sinx. Знание формулы синусов и косинусов кратных дуг дало возможность Виету решить уравнение 45-й степени, предложенное математиком А. Рооменом; Виет показал, что решение этого уравнения сводится к разделению угла на 45 равных частей и что существуют 23 положительных корня этого уравнения. Виет решил задачу Аполлония с помощью линейки и циркуля.

Непосредственно применение трудов Виета очень затруднялось тяжёлым и громоздким изложением. Из-за этого они полностью не изданы до сих пор. Более или менее полное собрание трудов Виета было издано в 1646 году в Лейдене нидерландским математиком ван Скоотеном под названием «Математические сочинения Виета». Г. Г. Цейтен отмечал, что «чтение работ Виета затрудняется несколько изысканной формой, в которой повсюду сквозит его большая эрудиция, и большим количеством изобретённых им и совершенно не привившихся греческих терминов. Потому влияние его, столь значительное по отношению ко всей последующей математике, распространялось сравнительно медленно».


2. 4. Последователи Ф. Виета

Символика Виета вызвала всеобщее восхищение. Она позволила описать законы арифметики и алгоритмы с немыслимыми ранее общностью и компактностью, облегчила и углубила исследование общих числовых законов. Однако символика Виета была непохожа на современную, местами громоздка, и учёные разных стран приступили к её совершенствованию. Символики Виета придерживался впоследствии Пьер Ферма.

Англичанин Томас Хэрриот в своём посмертно изданном (1631) труде уже очень близок к современной символике: он обозначает переменные строчными буквами, а не заглавными, как у Виета, использует знак равенства, а также придуманные им символы сравнения «>» и «<». Развивая работы Виета, он подготовил труд «Применение аналитического искусства к решению алгебраических уравнений», опубликованный посмертно в 1631 году. Хэрриот значительно усовершенствовал алгебраическую символику Виета, приблизив её к современной.

Дальнейшее значительное усовершенствование алгебраической символики принадлежит Декарту. Декарт много сделал, чтобы придать алгебраической символике максимальную простоту и всеобщность. Декарт усовершенствовал буквенную символику. Он обозначал известные величины буквами а, b, с, . . ., неизвестные («неопределенные») – буквами x, y, z, .... Он ввел обозначения степеней: a2, a3 , х3 , . . . Правда, квадраты величин он выражал и с помощью символов аа, хх.

Все буквы в формулах Декарта считались положитель­ными величинами; для обозначения отрицательных ве­личин ставился знак минус; если знак коэффициента про­изволен, перед ним ставилось многоточие. Знак равенства имел необычный вид . Вот как, например, выглядело уравнение с произвольными коэффициентами:

+x4…px3…qx…0.

И еще один символ применял Декарт: он ставил звез­дочки, чтобы показать отсутствующие члены уравнения, например:

         x5*** – b 0.

Другие математики того времени тоже пользовались символикой, близкой к разработанной Декартом, а древние греки излагали свои мысли вообще без символики.

Понимая, что сила математического метода не только в его всеобщности, но и в логической обоснованности, Декарт исследует основное понятие математики — число. Историки считают, что и здесь ему принадлежит слава первооткрывателя современной точки зрения на число. Он вводит в математику, наряду с положительными и рациональными числами, как вполне законные отрицательные и иррациональные числа.

Итогом и завершением усовершенствования математической символики стала «Универсальная арифметика» Ньютона. Уже будучи студентом, Ньютон понял, что дифференцирование и интегрирование — взаимно обратные операции. Эта основная теорема анализа уже более или менее ясно вырисовывалась в работах Торричелли, Грегори и Барроу, однако лишь Ньютон понял, что на этой основе можно получить не только отдельные открытия, но мощное системное исчисление, подобное алгебре, с чёткими правилами и гигантскими возможностями. Терминология и символика Ньютона довольно неуклюжи: флюксия (производная), флюэнта (первообразная), момент величины (дифференциал) и т. п. Сохранились в математике только ньютоновское обозначение «o» для бесконечно малой dt (впрочем, эту букву в том же смысле использовал ранее Грегори), да ещё точка над буквой как символ производной по времени.

Некоторые оставшиеся тонкости символики уточнил Эйлер. Эйлера нередко характеризуют как гениального «вычислителя». Действительно, он был превзойдённым мастером формальных выкладок и преобразований, в его трудах многие математические формулы и символика получили современный вид (например, ему принадлежат обозначения для е и ). Эйлер внёс в науку ряд глубоких идей, которые и ныне служат образцом глубины проникновения в предмет исследования.


3. Развитие алгебраической символики на современном этапе

Вплоть до XVIII века под алгеброй понималась наука о буквенных вычислениях, тождественных преобразованиях буквенных формул, решении уравнений первой — четвертой степеней, о логарифмах, прогрессиях, комбинаторики. В настоящее время все эти разделы алгебры принято называть элементарной алгеброй.

В XVIII—XIX веках предмет алгебры — это прежде всего изучение многочленов, теория алгебраических уравнений с одним неизвестным, теория систем линейных уравнений с несколькими неизвестными, а также теория матриц и определителей.

Третий (современный) этап развития алгебры как науки об алгебраических операциях начался в середине XIX века и был связан с появлением разнообразных примеров алгебраических операций над объектами совсем иной природы, нежели действительные числа. Первыми такими примерами явились умножения подстановок и операции над комплексными числами.

В 1900 году Давид Гильберт на Международном конгрессе математиков представил список из 23 нерешённых математических проблем. Эти проблемы охватили множество областей математики и сформировали центр приложения усилий математиков XX столетия. Сегодня десять проблем из списка решены, семь частично решены, и две проблемы всё ещё открыты. Оставшиеся четыре сформулированы слишком обобщённо, чтобы имело смысл говорить об их решении.

Во второй половине XX века, в связи с появлением компьютеров, произошла существенная переориентация математических усилий. Значительно выросла роль таких разделов, как численные методы, теория оптимизации, общение с очень большими базами данных, имитация искусственного интеллекта, кодирование звуковых и видеоданных и т. п. Возникли новые науки — кибернетика и информатика.

В XX в. были созданы новые математические теории, как, например, топология, математическая логика, и коренным образом преобразованы старые, изменился сам язык математики, так что математику XIX в. для чтения современных книг пришлось бы переучиваться заново. Понятия, методы и конструкции современной математики носят весьма общий характер. Соответственно чрезвычайно расширилось поле применения математических методов. Математические методы проникли почти во все отделы физики, в химию, а в последние десятилетия — в биологию, медицину, лингвистику, экономику. Сама математика необыкновенно расширилась количественно и претерпела глубокие качественные изменения. В целом она поднялась на более высокую ступень абстракции.

В связи с тем, что наука не стоит на месте, математика постоянно расширяется, появляются новые разделы математики, поэтому мы считаем, что и символика должна постоянно совершенствоваться.


Заключение

Создание основ математики в том виде, к которому мы привыкли при изучении этой науки в школе, выпало на долю греков и относится к VI—V векам до нашей эры. Античная наука достигла вершины в работах Евклида, Архимеда, Аполлония.

Новый подъем античной математики в III веке нашей эры связан с творчеством великого математика Диофанта. Диофант сумел возродить и развить числовую алгебру вавилонян, освободив ее от геометрических построений, которыми пользовались греки. У него впервые появляется буквенная символика. Диофант ввел обозначения: неизвестной, квадрата, куба, четвертой, пятой и шестой степеней, а также первых шести отрицательных степеней.

Начиная с V века центр математической культуры постепенно перемещается на восток — к индусам и арабам. Математика индусов была числовой. Основные достижения индусов состоят в том, что они ввели в обращение цифры, называемые нами арабскими, и позиционную систему записи чисел, обнаружили двойственность корней квадратного уравнения, двузначность квадратного корня и ввели отрицательные числа. Достижение индусов в совершенствовании алгебраической символики состоит в том, что они ввели обозначения нескольких различных неизвестных и их степеней. Как у Диофанта, они были по сути дела сокращениями слов.

При решении задачи главное — осмысление содержания задачи, способность выразить его на языке алгебры. Проще говоря, записать условие задачи посредством символов — математических знаков.

Диофант, как уже говорилось, дал понятие об алгебраическом уравнении, записанном символами, однако очень далекими от современных. Первым стал обозначать буквами не только неизвестные, но и данные величины Франсуа Виет. Тем самым ему удалось внедрить в науку великую мысль о возможности выполнять алгебраические преобразования над символами, т. е. ввести понятие математической формулы. Этим он внес решающий вклад в создание буквенной алгебры, чем завершил развитие математики эпохи Возрождения и подготовил почву для появления результатов Ферма, Декарта, Ньютона.

Может показаться, что Виет ввел в символику алгеб­ры совсем немного. Буквами для обозначения отрезков пользовались еще Евклид и Архимед, их успешно приме­няли Леонардо Пизанский, Иордан Неморарий, Николай Орем, Лука Пачоли, Кардано, Бомбелли и многие дру­гие математики. Но сделал существенный шаг вперед Виет. Его символика позволила не только решать кон­кретные задачи, но и находить общие закономерности и полностью обосновывать их. Это, в свою очередь, способ­ствовало выделению алгебры в самостоятельную ветвь математики, не зависящую от геометрии.

Закончили совершенствование алгебраической символики в том виде, в котором мы знаем ее сейчас, Ньютон и частично Эйлер.

На современном этапе развития науки мы выяснили, что появляются новые разделы математики, а также новые разделы смежных с математикой наук, поэтому математический язык постоянно совершенствуется.


Библиографический список

1. Энциклопедия для детей. Т.11. Математика / Глав. ред. М.Д. Аксенова. – М.: Аванта+, 2003. – 688 с.: ил.

2. Энциклопедический словарь юного математика / Сост. А. П. Савин. – М.: Педагогика, 1985. – 352 с., ил.

3. Математический энциклопедический словарь / Гл. ред. Ю. В. Прохоров; ред. кол.: С. И. Адян, Н. С. Бахвалов, В. И. Битюцков, А. П. Ершов, Л. Д. Кудрявцев, А. Л. Онищик, А. П. Юшкевич. – М.: Сов. энциклопедия. 1988. – 847 с., ил.

4. За страницами учебника математики: Арифметика. Алгебра. Геометрия: Кн. Для учащихся 10 – 11 кл. общеобразоват. Учреждений / Н. Я. Виленкин, Л. П. Шибасов, З. Ф. Шибасова. – М.: Просвещение: АО «Учеб. лит.», 1996. – 320 с., ил.

5. История математики в школе: 9 – 10 кл. Пособие для учителей. – М. Просвещение, 1983. – 351 с., ил.

6. История математики под редакцией А. П. Юшкевича в трёх томах, М.: Наука, 1970.

7. А.Г. Цыпкин/ Справочник по математике, 1983, Москва «Наука».

8. Г. И. Глейзер/ История математики в школе. М., Просвещение, 1964 — 376 с.


9. Д. К. Самин/ 100 великих ученых/ Вече, 2010 г., 432 стр.