Напряжения, деформации и сейсмичность на современном этапе эволюции литосферы байкальской рифтовой зоны 25. 00. 10 геофизика, геофизические методы поисков полезных ископаемых
Вид материала | Автореферат диссертации |
- Паспорт специальности 25. 00. 10 – геофизика, геофизические методы поисков полезных, 174.87kb.
- Рабочий учебный план специальности 130201/02 Геофизические методы исследований скважин/Геофизические, 235.37kb.
- Методика изучения деформационного состояния геологической среды района екатеринбурга, 290.94kb.
- Комплекс геофизических и геохимических методов исследований при проектировании, строительстве, 427.17kb.
- Рабочая программа дисциплины ф тпу 1 21/01 Рабочая программа учебной ф тпу 1-21/01, 191.37kb.
- Программа минимум кандидатского экзамена по специальности 25. 00. 10 Геофизика, геофизические, 112.68kb.
- Геза Николаю Ивановичу диплома кандидата наук решение, 78.48kb.
- Гольдин С. В., Суворов В. Д. (Ингг со ран, г. Новосибирск), Макаров П. В., Стефанов, 12.26kb.
- Сейсмогеологические модели нефтегазовых месторождений юго-востока Западно-Сибирской, 729.32kb.
- Рабочая программа учебной дисциплины ф тпу 1-21/01 утверждаю, 314.31kb.
На правах рукописи
КЛЮЧЕВСКИЙ Анатолий Васильевич
НАПРЯЖЕНИЯ, ДЕФОРМАЦИИ И СЕЙСМИЧНОСТЬ НА СОВРЕМЕННОМ
ЭТАПЕ ЭВОЛЮЦИИ ЛИТОСФЕРЫ БАЙКАЛЬСКОЙ РИФТОВОЙ ЗОНЫ
25.00.10 – геофизика,
геофизические методы поисков полезных ископаемых
Автореферат
диссертации на соискание ученой степени
доктора геолого-минералогических наук
Иркутск-2008
Работа выполнена в Институте земной коры Сибирского отделения
Российской академии наук
Научный консультант: доктор геолого-минералогических наук
Джурик Василий Ионович (ИЗК СО РАН, г. Иркутск)
Официальные оппоненты: доктор физико-математических наук
член-корреспондент РАН
Николаев Алексей Всеволодович (ИФЗ, г. Москва)
доктор физико-математических наук, профессор
Иванов Федор Илларионович (ИГУ, г. Иркутск)
доктор геолого-минералогических наук, профессор
Дмитриев Александр Георгиевич (ИрГТУ, г. Иркутск)
Ведущая организация: Геологический институт СО РАН (г. Улан-Удэ)
Защита состоится 4 июня 2008 г. в 9 часов на заседании диссертационного совета
Д 003.022.02 в конференц-зале Института земной коры СО РАН по адресу:
664033, Иркутск-33, ул. Лермонтова, 128.
С диссертацией можно ознакомиться в библиотеке Иркутского научного центра СО РАН
в здании Института земной коры СО РАН.
Отзывы на автореферат в 2-х экземплярах, заверенные печатью учреждения, просим направлять по указанному адресу ученому секретарю совета
канд. геол.-мин. наук Меньшагину Юрию Витальевичу, e-mail men@crust.irk.ru
Автореферат разослан “____ ” ___________________ 2008 г.
Ученый секретарь
диссертационного совета
канд. геол.-мин. наук Меньшагин Ю.В.
ВВЕДЕНИЕ
Актуальность проблемы. Представленная работа направлена на разработку новых подходов к исследованию структуры и динамики напряженно-деформированного состояния (НДС) литосферы и сейсмичности на современном (инструментальном) этапе эволюции Байкальской рифтовой зоны (БРЗ). Задачи диссертации определены актуальной проблемой обеспечения сейсмической безопасности.
Для эффективного проведения антисейсмических мероприятий необходимо решение ряда фундаментальных и прикладных задач, определяемых структурой и реологическими свойствами среды, НДС литосферы, геодинамическими процессами и общей сейсмичностью региона. Современные представления о сейсмичности как сложном явлении деформирования иерархически построенной структурно-неоднородной дискретной геофизической среды в феноменологической модели стационарного сейсмического процесса (Садовский и др., 1987) формируют понятие о неустойчивости НДС горных пород и стохастическом характере распределения напряжений и деформаций в литосфере (International…, 2002). В рамках этих фундаментальных представлений выдвинута проблема изучения свойств геолого-геофизической среды, НДС литосферы и сейсмичности активных регионов методами статистического анализа параметров толчков в полном диапазоне энергетических классов землетрясений. Предполагается, что выявленные на новом уровне познания закономерности НДС литосферы и тенденции его изменения дадут возможность связать их с пространственно-временной и энергетической структурой сейсмичности и смоделировать развитие сейсмического процесса, в том числе и сильных землетрясений, для решения проблем обеспечения сейсмической безопасности регионов.
Байкальская рифтовая система (БРС) более полувека привлекает пристальное внимание исследователей. Несомненны большие достижения в ее геолого-геофизическом изучении, пройден важный экспериментальный этап в исследовании внутриконтинентальной рифтовой структуры. Наблюдаемая в БРЗ сейсмичность указывает на неоднородность среды и неоднородное пространственно-временное распределение напряжений и деформаций. НДС литосферы региона характеризовалось, в основном, кинематическими и динамическими параметрами очагов небольшого числа сильных землетрясений. В настоящее время получение новых фундаментальных знаний о НДС литосферы БРЗ ориентируется не только на изучение отдельных аспектов, но и использует теорию и методы синергетики и нелинейных динамических систем для целостного понимания природы и эволюции БРС. Это не только позволяет представить весь объем имеющихся знаний о сейсмичности и НДС литосферы БРЗ в рамках единой концепции, но и обнаружить качественно новые, присущие широкому классу природных объектов, особенности строения и эволюции рифтовой системы.
Цель исследований. Разработка технологии статистического анализа пространственно-временной и энергетической структуры НДС среды и сейсмичности на основе решения задач очаговой и структурной сейсмологии для установления основных закономерностей НДС литосферы и сейсмичности активных регионов. Выявление, идентификация и верификация геолого-геофизических структур, геодинамических явлений и особенностей НДС среды в литосфере БРЗ, влияние которых нашло отражение в пространственно-временных вариациях динамических параметров очагов землетрясений и сейсмичности, для развития феноменологической модели стационарного сейсмического процесса в условиях БРС.
Основные задачи исследований:
1) выполнить массовое определение динамических параметров очагов землетрясений, разработать методы статистического анализа пространственно-временной и энергетической структуры НДС литосферы и развить способы геофизической интерпретации результатов, полученных по данным о параметрах сейсмических источников БРЗ;
2) установить и верифицировать основные закономерности пространственно-временных связей НДС среды и сейсмичности на различных иерархических уровнях литосферы БРЗ с целью развития феноменологической модели стационарного сейсмического процесса для решения проблем сейсмической безопасности в Байкальском регионе.
Фактический материал, методы исследования и аппаратура. Основой диссертации являются динамические параметры очагов почти 90000 землетрясений, зарегистрированных с 1968 по 1994 гг. в пределах Байкальского региона (=48–60 с.ш., =96–122 в.д.). В работе определены динамические параметры очагов в широком диапазоне энергетических классов толчков (5KР15), представительность выборки достигает 95% от числа зарегистрированных землетрясений. Сейсмичность региона исследована по материалам Байкальского филиала (БФ) ГС СО РАН за 1964–2002 годы, где диссертант работал с 1972 по 1979 годы. В диссертации использованы также материалы режимных и полевых сейсмологических наблюдений, с целью получения которых автор, начиная с 1976 г. участвовал в экспедиционных сейсмологических исследованиях на трассе БАМ и других территориях как начальник отряда. Часть используемых в диссертации фактических данных относится к территории Монголии, в различных районах которой диссертант проводил сейсмологические исследования. При экспедиционных исследованиях использованы различные сейсмографы с аналоговой и цифровой регистрацией, аппаратурно-вычислительные и измерительные комплексы, а также геофизическое оборудование лаборатории сейсмологии ИЗК СО РАН. Методы исследований ориентировались на формирование целостного представления (в рамках разрабатываемой проблемы и сделанных допущений) об основных характеристиках и свойствах НДС литосферы и сейсмичности БРЗ. В соответствии с поставленными проблемами в диссертации применен широкий спектр подходов при развитии методов и алгоритмов формализованного определения и статистической обработки динамических параметров очагов землетрясений, анализа и интерпретации пространственно-временных и энергетических закономерностей НДС среды и сейсмичности на различных иерархических уровнях литосферы БРЗ, идентификации и верификации происходящих в ней геодинамических процессов и пространственных геологических структур. Диссертантом разработаны и развиты способы геофизической интерпретации параметров сейсмических источников в формулировках НДС литосферы, методика исследования кинематики и динамики сейсмичности в продолжительных группах сейсмических событий, способ выделения кластеров толчков на общем скоростном фоне сейсмического потока, алгоритм оценки локальной сейсмической опасности в зонах разломов и метод математического моделирования смещений скального грунта, в котором учитываются особенности НДС среды и геофизических процессов, происходящих в очаговых зонах землетрясений. Достоверность полученных в диссертации основных результатов и выводов подтверждается высокой представительностью используемых данных, верификацией по натурным и хорошо проверяемым материалам сейсмологических и геофизических наблюдений и широкой апробацией.
Основные результаты и научные положения работы, выносимые на защиту.
1. Технология исследования пространственно-временной и энергетической структуры НДС литосферы и сейсмичности активных регионов, включающая в себя комплекс методов определений и статистической обработки динамических параметров очагов землетрясений, алгоритмов реконструкции и идентификации НДС среды на различных пространственно-временных и энергетических уровнях, способов калибровки и интерпретации динамических параметров в формулировках НДС среды, форматированных массивов исходных сейсмологических материалов и баз данных сейсмических источников.
2. Критерии и параметры пространственно-временных вариаций НДС литосферы БРЗ характеризуют сложную структурную неоднородность и динамическую неустойчивость НДС среды. В эволюции литосферы БРЗ определяющую роль играют перестройки НДС среды, обусловленные инверсией осей главных напряжений, возникающей в областях доминирования рифтогенеза в районе Южно-Байкальской, Хубсугульской-Дархатской и Муйской впадин. В центральной части БРЗ неоднородность НДС литосферы сильнее, чем на флангах и окраинах, а максимальная неоднородность НДС среды установлена в Южно-Байкальской впадине.
3. Метод прогноза динамики сейсмичности на основе мониторинга НДС литосферы по данным о динамических параметрах очагов землетрясений и развитой феноменологической модели стационарного сейсмического процесса в БРЗ. Перестройки НДС литосферы БРЗ приводят к кратковременной упорядоченности энергетики и синхронизации динамики сейсмичности, а в остальное время параметры сейсмичности в трех районах и шести участках региона коррелированны слабо. Наиболее сильные землетрясения региона с энергетическим классом KР14 (магнитуда MLH5.5) происходили пространственно разнесенными парами после инверсии осей главных напряжений в литосфере БРЗ.
4. Основные закономерности пространственно-временных связей НДС среды и сейсмичности установлены и верифицированы в литосфере БРЗ. В поле эпицентров толчков идентифицировано разделение сейсмичности БРЗ на три района. В энергетической структуре сейсмичности соответствие наблюдается в наклонах графиков повторяемости землетрясений и в распределении суммарной сейсмической энергии во времени. Эффекты синхронного нарастания скорости сейсмического потока указывают, что активизации динамики сейсмичности происходили практически в одно время в различных областях БРЗ после перестроек НДС литосферы.
Научная новизна. Впервые на представительном фактическом материале выполнен статистический анализ пространственно-временной и энергетической структуры НДС литосферы БРЗ, который показал, что НДС литосферы региона неоднородно в пространстве и неустойчиво во времени. Диссертантом установлено, что основные наблюдаемые особенности закономерных изменений сейсмических моментов землетрясений обусловлены сменой типа подвижки в очаге при инверсии осей главных напряжений в литосфере БРЗ. Показано, что такие процессы хорошо вписываются в рамки модели нелинейной динамики напряжений с бифуркацией трехкратного равновесия. При анализе радиусов дислокаций установлено, что в центральной части БРЗ среда деформирована сильнее, чем на флангах и окраинах, а максимальная неоднородность НДС среды обнаружена в Южно-Байкальской впадине – историческом ядре БРС (Logatchev, Zorin, 1992). В литосфере БРЗ выделены зоны неоднородностей НДС среды, максимумы которых корреспондируют с областями доминирования рифтогенеза в районе Южно-Байкальской, Хубсугульской-Дархатской и Муйской впадин.
Проведенный диссертантом ретроспективный анализ формализованных статистических параметров НДС литосферы и сейсмичности показал, что наиболее сильные землетрясения региона с энергетическим классом KР14 (магнитуда MLH5.5) обычно происходят пространственно разнесенными парами в определенных областях после инверсии осей главных напряжений. Такие предпосылки предполагают возможность среднесрочного прогноза сильных толчков в Байкальском регионе по данным о динамических параметрах очагов землетрясений. Перестройки НДС литосферы БРЗ приводят к кратковременной упорядоченности энергетики и синхронизации динамики сейсмичности, обусловленной переходом структурно-неоднородной иерархической среды через неустойчивость к метастабильному состоянию, а в остальное время характеристики и параметры сейсмичности различных областей БРЗ коррелированны слабо.
Разработана методика оценки локальной сейсмической опасности в зоне разлома по данным о параметрах сейсмических источников и осуществлен детальный пространственно-временной анализ НДС среды и сейсмичности в зоне Белино-Бусийнгольского разлома. Установлено, что НДС среды в зоне разлома неоднородно, а динамика напряжений хорошо корреспондирует с вариациями напряженного состояния литосферы южного Прибайкалья и БРЗ. В диссертации установлено, что в продолжительных сериях афтершоков при повышенном уровне деформационных процессов, характерном для перестроек НДС среды, возникает явление самоорганизации, направленное на ускоренный сброс напряжений. Кинематика и динамика афтершоков корреспондируют с характером перестроек НДС среды в зонах очагов сильных землетрясений, который в целом аналогичен механизму перестроек НДС литосферы БРЗ. Аналогия механизмов перестроек объясняется самоподобием структурно-неоднородной среды.
В диссертации установлено, что перестройки НДС литосферы БРЗ обусловлены инверсией осей главных напряжений и между усилением неустойчивости и активизацией сейсмического процесса верифицирована связь. Это развивает феноменологическую модель стационарного сейсмического процесса, отражая особую роль и существенное влияние структуры и перестроек НДС литосферы на сейсмичность БРЗ. Наблюдаемая на исследуемом уровне сейсмогенеза стадийность и системность процесса является одним из атрибутов механизма возвращения иерархической системы разломов-блоков в метастабильное состояние после геодинамических перестроек и сильных землетрясений.
Практическая значимость работы. Диссертантом разработана и применена методика массового определения динамических параметров очагов землетрясений, ориентированная на использование до 100% зарегистрированных сейсмических событий для изучения и анализа НДС литосферы БРЗ. Разработаны и реализованы алгоритмы обработки и формализации исходных данных, направленные на статистический анализ пространственно-временной и энергетической структуры НДС среды и сейсмичности на различных иерархических уровнях литосферы региона. Развиты методики и алгоритмы, ориентированные на идентификацию динамических процессов и выделение пространственных структур в литосфере БРЗ. Предложены способы геофизической интерпретации полученных материалов и результатов в терминах и понятиях НДС литосферы.
На основе феноменологической модели стационарного сейсмического процесса и мониторинга НДС литосферы БРЗ разработан метод среднесрочного прогноза сильных землетрясений по данным о динамических параметрах очагов землетрясений. На картах пространственного распределения сейсмических моментов сильных землетрясений идентифицированы районы со статистически значимыми вероятностями реализации типа подвижки в очаге. Такая регионализация Байкальского региона, в совокупности с другими геолого-геофизическими методами, дает возможность более надежно и обоснованно подойти к сейсмическому районированию территории на основе классификации сейсмических толчков по типу подвижки в очаге. Расчеты и карты показали, что землетрясения из зоны Главного Саянского разлома представляют повышенную сейсмическую опасность для городов юга Восточной Сибири.
Разработана методика оценки локальной сейсмической опасности в зоне разлома по данным о параметрах сейсмических источников. В зоне Белино-Бусийнгольского разлома оценена локальная сейсмическая опасность и выделены участки территории, в которых сейсмическая опасность минимальна. Полученные карты коэффициентов локальной опасности разлома могут быть использованы как базовые для оценки сейсмических, эколого-геологических и других рисков.
Заложены основы компьютерной информационной технологии реконструкции и идентификации НДС литосферы БРЗ на различных пространственно-временных масштабах, включающие в себя автоматизацию процесса, определение текущих и прогнозных оценок и компьютерную визуализацию НДС среды и сейсмичности по данным очаговой и структурной сейсмологии.
Личный вклад автора. Личный вклад автора в защищаемую диссертацию является определяющим, что подтверждается списком публикаций. Основные научные результаты отражены в 78 публикациях. Всего по теме диссертации опубликовано более 100 работ, в том числе 2 монографии.
Апробация работы. Основные результаты исследований докладывались и обсуждались на региональных тематических совещаниях (Иркутск, 1982; 1984; 1997; 2007), на совещаниях по проблемам сейсмичности, НДС литосферы и геодинамики (Владивосток, 1989; Южно-Сахалинск, 1991; Екатеринбург, 1998; Новосибирск, 2000; Иркутск, 2001; 2002; 2003; 2004; 2005; 2006; 2007; Красноярск, 2001; Улан-Удэ, 2003) и международных научных форумах различного ранга (Иркутск, 1999; 2002; Улан-Батор, 2001; 2007; Улан-Удэ, 2005).
Объем и структура диссертации. Общий объем работы (313 стр.) составляют четыре части, введение и заключение (всего 286 стр. текста), 80 рисунков (на 66 стр.), 25 таблиц (на 15 стр.) и список литературы (410 наименований на 27 стр.).
Работа выполнена в лаборатории общей и инженерной сейсмологии Института земной коры СО РАН. Автор выражает особую благодарность научному консультанту, доктору геол.-мин. наук В.И. Джурику за постоянное внимание и помощь на всех этапах работы. Автор глубоко благодарен академикам РАН Н.А. Логачеву, Ф.А. Летникову и Г.С. Голицыну за постоянное внимание и поддержку исследований. Автор благодарит коллег по работе В.М. Кочеткова, Ю.А. Зорина, Е.Х. Турутанова, В.М. Демьяновича, М.Г. Демьяновича, К.Ж. Семинского, В.С. Имаева, В.И. Найдича, В.А. Потапова, В.А. Павленова, В.В. Чечельницкого, Е.Н. Черных, Ф.Л. Зуева, Г. Баяра, А.А. Храмцова, Н.М. Грудинина, Н.А. Гилеву и других, содействовавших выполнению работы, за помощь в экспериментальных и теоретических исследованиях и ценные советы. Автор благодарен член-корр. РАН Е.В. Склярову, доктору физ.-мат. наук С.И. Голенецкому, докторам геол.-мин. наук К.Г. Леви, С.И. Шерману, В.А. Голубеву, В.В. Ружичу, кандидатам геол.-мин. наук А.В. Чипизубову, В.А. Санькову, В.И. Мельниковой, Н.А. Радзиминович и другим коллегам за обсуждение полученных результатов и доброжелательную критику отдельных положений диссертации, а также сотрудникам лаборатории общей и инженерной сейсмологии ИЗК СО РАН, оказавшим помощь в ходе работы над диссертацией.
ТЕОРИЯ, МЕТОДИКА ОПРЕДЕЛЕНИЯ И ОСНОВНЫЕ АЛГОРИТМЫ ОБРАБОТКИ И АНАЛИЗА ДИНАМИЧЕСКИХ ПАРАМЕТРОВ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ БАЙКАЛЬСКОЙ РИФТОВОЙ ЗОНЫ
Модельные математические и натурные исследования по физике и механике очага землетрясения получили ускоренное развитие в связи с проблемами прогноза движений грунта при сильных сейсмических толчках (Костров, 1975; Мячкин, 1978; Райс, 1982; Николаевский, 1982; Исследования…, 1976; Аки, Ричардс, 1983; Ризниченко, 1985; Шебалин, 1997; Арефьев, 2003; Потапов, Иванов, 2005) и поиска предвестников землетрясений (Физика…, 1975; Добровольский, 1991; Соболев, 1993; Соболев, Пономарев, 2003; Завьялов, 2006). В основе общепризнанной в настоящее время динамической теории очага землетрясения лежит моделирование пространственно-временного распределения напряжений и сил, наиболее близко соответствующих наблюдаемым параметрам сейсмических волн. Ранние исследования вводят модели динамики сейсмического разрыва, использующие однородное распределение напряжений и трения на поверхности разлома. Классические примеры таких моделей – механическая модель пружин и блоков (Burridge, Knopov, 1967), модель кругового разрыва (Костров, 1966), и модели прямоугольной и круговой дислокации (Haskell, 1964; Brune, 1970; 1971). Статистические модели учитывают неоднородности среды и предполагают, что разлом рвется когерентно только на малом расстоянии по сравнению с длиной разрыва. В прямом модельном приближении показано, что распространение разрыва в динамической модели землетрясения 28 июня 1992 г. (Калифорния, Ландерс, MW=7.3) следовало сложным путем, контролируемым пространственными вариациями поля начальных напряжений (Cohee, Beroza, 1994; Peyrat et al., 2001). Расчеты динамического напряжения для землетрясений 1992 г. Ландерс, в Нортридже (США, 1994, MW=6.7) и в Кобе (Япония, 1995 г., MW=6.9) указали на сильную изменчивость распределений падения напряжения (Bouchon, 1997; Day et al., 1998). В неоднородной разломной модели (Kanamori, Stewart, 1978; Aki, 1979) неоднородности вызывают беспорядочное распределение смещения и падения напряжений в процессе разрыва и являются ответственными за высокочастотное излучение (Das, Aki, 1977; Das, Kostrov, 1983; 1988). Классический метод описывает сейсмические очаги их энергией (энергетический класс, магнитуда, сейсмический момент) и фокальным механизмом с помощью понятия тензора сейсмического момента (Арефьев, 2003). В этом приближении тензор сейсмического момента описывает эквивалентные силы точечных источников общего вида и содержит всю информацию об очаге, которую можно получить из наблюдений сейсмических сигналов.
Байкальская рифтовая зона более полувека привлекает пристальное внимание ученых-сейсмологов и несомненны большие достижения в изучении сейсмичности, НДС литосферы и современной геодинамики. Со временем стало понятно, что дальнейший прогресс в изучении связан со статистическими подходами к анализу пространственно-временных закономерностей НДС литосферы БРЗ и сейсмичности на основе современных представлений о деформировании структурно-неоднородной дискретной геолого-геофизической среды и происходящем в ней стационарном сейсмическом процессе (Садовский и др., 1987; International…, 2002). Эти подходы основаны, прежде всего, на трансформации теории, моделей и методик, разработанных сейсмологией очага для сильных землетрясений, в диапазон многочисленных слабых и умеренных сейсмических толчков. В рамках решения этой проблемы в первой части диссертации разработаны и на представительном фактическом материале реализованы основные блоки технологии исследования пространственно-временной и энергетической структуры НДС среды по данным о динамических параметрах очагов землетрясений, развитой для реконструкции и идентификации НДС литосферы БРЗ.