Издательство Института Психотерапии 2002 Носс И. Н. Введение в технологию психодиагностики. М.: Изд-во Института психотерапии, 2002 с. Эта книга

Вид материалаКнига
Подобный материал:
1   ...   4   5   6   7   8   9   10   11   ...   27


К мерам изменчивости измеряемых признаков, как правило, относят характеристики распределения эмпирических данных (нормальность распределения) и характеристики вариации признаков.

Нормальность распределения данных определяет численную характеристику дифференциации испытуемых. Она вычисляется при помощи критерия Хи-квадрат Пирсона, а также с использованием коэффициентов асимметрии и эксцесса распределения переменных.

Ширина полосы разброса данных по шкале измерений от min до max; это характеристика вариации признаков. Простейшими измерителями вариации признаков являются размах вариации R (это разность между наибольшим и наименьшим значениями признаков, то есть R = xmax — xmin) и дискриминативность заданий — субтестов (способность отдельных пунктов (заданий) теста дифференцировать обследуемых относительно "максимального" или "минимального" результата теста). Мера соответствия успешности выполнения одного субтеста всей методике является показателем дискриминативности заданий теста и называется коэффициентом дискриминации (индексом дискриминативности). Индекс дискриминативности теста рассчитывается в процессе разработки тестов и тестовой батареи. Он вычисляется при помощи а) точечно-биссериального коэффициента корреляции (Rpb) (cм. выше) и б) метода контрастных групп в виде разности между долей лиц, правильно решивших задание из "высокопродуктивной" и "низкопродуктивной" групп (D)*.


D = (Nn max / Nmax ) — (Nn min / Nmin). [28]


Наибольший интерес представляет характер группировки значений признака вокруг их средней. Мерой ее определения являются дисперсия (среднеквадратическое отклонение) и коэффициент вариации (V), который определяется как отношение дисперсии (х) к среднему (Мх), выраженное в процентах:


V = (х / Мх) * 100%. [29]


Между характеристиками распределения и вариативностью переменных имеется связь, которая предопределяет оптимальное сочетание формы распределения с вариативностью. Большая вариативность признаков говорит о том, что распределение ненормально, асимметрично и сильно скошено. Малая вариативность показывает, что тест не дифференцирует испытуемых по измеряемому признаку (испытуемые отвечают или решают задание одинаково). При анализе трудности, нормальности распределения и вариативности показателей тестов необходимо соблюдать МЕРУ, которая вырабатывается в процессе накопления опыта диагностической работы и статистической обработки данных.

Прогностическая валидность является элементом содержания достоверности тестов и определяется как степень точности и обоснованности суждения о диагностируемом психическом свойстве по его результату спустя определенное время после измерения.

Показателем прогностичности теста является степень регрессии тестовых данных к объективным критериям. Регрессия представляет собой функцию f (x1, x2 х3, ... x n ), описывающую зависимость среднего показателя теста, измеряющего данное свойство от заданных фиксированных значений реального проявления этого свойства (внешнего критерия — y). Эта функция может носить линейный и нелинейный характер (линейная регрессия: y = b + ax; параболическая зависимость: y = b + ax + cx2; гиперболическая зависимость: y = b + a/x; показательная функция: y = b + ax).

В практической психодиагностике для прогноза развития или проявления измеренного свойства чаще применяют линейную или множественную линейную регрессию (y = b + a1 x1 +a2 x2... +an xn). Физический смысл ее заключается в приравнивании зависимой и независимой переменных. Изменение зависимой переменной прямо определяет изменение независимой переменной. Коэффициент а показывает угол наклона оси регрессии, а свободный член b — отстояние начала оси регрессии от начала координат. Коэффициент корреляции показывает уровень прогностичности функции, а R2 — уровень объясняемой дисперсии y за счет изменения х. При использовании тестовой батареи прогноз измеряемого свойства осуществляется посредством связанных между собой нескольких зависимых переменных (x1, x2 х3, ... xn ), которые и формируют множественную линейную регрессию. При использовании множественной линейной функции при прогнозе развития измеряемого свойства повышается уровень прогностичности тестирования и его достоверность за счет перекрытия разными методиками различных сторон измеряемого свойства.


Надежность тестов*


Надежность — это характеристика психодиагностической методики, отражающая точность психодиагностических измерений, а также устойчивость (стабильность) результатов теста к действию посторонних случайных факторов. Надежность и валидность являются важнейшими характеристиками методики как инструмента психологического исследования.

Наибольшая стабильность результатов наблюдается при применении графических и графологических тестов, показатели которых меняются крайне медленно. Медленно изменяется почерк, практически неизменными остаются качество линий рисунков и их композиция.

Наибольшая динамичность показателей наблюдается у интеллектуальных тестов, которые напрямую зависят от способности человека накапливать и перерабатывать информацию.

На устойчивость (стабильность) показателей теста влияют следующие факторы:
  • состояние и настроение обследуемых;
  • мотивация испытуемых к тестированию;
  • эргономические факторы (освещенность, температура в помещении, вибрация, шумы и пр.);
  • характеристика деятельности (монотонность-динамичность, помехи и др.);
  • степень обучаемости (или натренированности) испытуемых и др.

Надежность результатов тестирования зависит также от а) изменчивости инструмента психологического измерения и б) факторов стабильности самой процедуры измерения. Таким образом, надежность есть степень согласованности результатов тестирования, получаемых при первом и последующих измерениях.

На практике наиболее широко применяются шесть типов надежности: надежность ретестовая (тест-ретест надежность); надежность параллельных форм; надежность частей теста (надежность как гомогенность тестов); надежность по Кудеру — Ричардсону; надежность интерпретатора («оценщика») и стандартная ошибка измерений.

Определение коэффициента надежности в первых двух случаях вычисляется по формулам расчетов коэффициентов корреляции (в зависимости от шкалы, в которой измерены данные) между первым и последующим измерениями или между параллельными формами теста.

Расчет коэффициента надежности при исследовании гомогенности теста осуществляется путем разбиения теста на равные субтесты и расчета корреляции между этими частями. Для определения общей надежности теста полученные коэффициенты корреляции вводятся в формулу Спирмена — Брауна:


Rxx = 2R / 1 + R, [30]

где R — корреляция «половин» теста.

Если части теста являются отдельными дихотомическими заданиями, например вопросами, на которые может быть два ответа (да или нет), или заданиями с оценкой результата как правильного, так и неправильного, используется формула:


Rxx = (K / K — 1) (1 —  (pi q i)/ x2), [31]


где pi — доля 1-го варианта ответа на i-й вопрос; q i — доля 2-го варианта на i-й вопрос.


Надежность частей теста может также рассчитываться по формуле Кудера — Ричардсона:


Rxx = (K / K — 1)*(1 —  ( x i2)/ x2); [32]


где К — количество равных частей теста;  x i2 — дисперсия i-й части теста;  x2 — дисперсия целого теста.


При работе с клиническими опросниками, тестами креативности и проективными технологиями надежность методик определяется путем сравнения интерпретаций результатов двумя или более экспертами-психологами. Высокие коэффициенты корреляции между ними показывают надежность тестовой оценки.

Коэффициенты надежности психологических измерений представляют собой величину дисперсии показателей, которая вычисляется путем возведения коэффициента корреляции в квадрат. Интерпретируется он следующим образом. Например, коэффициент корреляции между параллельными формами теста равен 0.75. Коэффициент надежности расчитывается так: 0.752 = 0.56. Это означает, что 56% дисперсии исследуемых тестовых данных зависят от истинной дисперсии признаков (данных параллельного теста), а 44% — от ошибок или случайных переменных.

Разберем гипотетический пример определения надежности двух форм теста** в ходе исследования креативности 100 школьников. В результате коэффициент надежности взаимозаменяемых форм с интервалом ретестирования две недели составил 0.7. Была вычислена надежность-гомогенность тестов при помощи формулы Спирмена — Брауна, которая составила 0.8. Надежность интерпретации («оценщика») с привлечением второго специалиста-психолога была равна 0.92. Анализ источников дисперсии ошибок показан в таблице.


Анализ источников дисперсии ошибок в исследуемом тесте

По надежности взаимозаменяемых форм (с временным интервалом две недели)

1 — 0.7 = 0.3 (ошибка ретеста + ошибка гомогенности)

По надежности эквивалентных половин теста (формула Спирмена — Брауна)

1 — 0.8 = 0.2 (ошибка гомогенности)

Разность

0.3 — 0.2 = 0.1(ошибка ретеста)

По надежности интерпретации («оценщика»)

1 — 0.92 = 0.08 (различия между интерпретациями)

Суммарная оценка дисперсии ошибок 0.2 + 0.1 + 0.08 = 0.38

Истинная дисперсия 1 — 0.38 = 0.62


Результаты исследования надежности теста креативности можно представить схематично в процентном распределении дисперсии показателей теста.


«Истинная» дисперсия: 62%

Дисперсия ошибок: 38%

Временная устойчивость; согласованность форм; независимость от различий между интерпретациями («оценщиками»).

Ошибка гомогенности: 20%

Ошибка ретеста: 10%

Различия между интерпретациями: 8%