Ек встречается повсюду, начиная от гамма-лучей с очень маленькой длиной волны до огромных волновых перемещений в облаках рассеянной между звёздами волновой пыли
Вид материала | Документы |
- Волновой алгоритм (Алгоритм Ли), 30.36kb.
- Эффект Мёссбауэра 2ч, 233.13kb.
- Применение рентгеноструктурного анализа к изучению материалов (катализаторов, адсорбентов, 150.77kb.
- Прослушивание цикла лекций; проведение лабораторных занятий по интерпретации результатов, 23.31kb.
- Его причины и особенности, силовые связи между частицами среды, перенос энергии без, 14.74kb.
- Технологические проблемы строительства глубоких скважин и методы их системного решения, 1949.31kb.
- А. П. Бояркина, 161.02kb.
- 1. Основные направления развития современной радиоэлектроники. Структурная схема радиоканала., 74.95kb.
- Dogme et Rituel de la haute Magie, 1856.07kb.
- Конспект лекций по курсу тмм автор: Тарабарин В. Б. Лекция, 154.03kb.
ВВЕДЕНИЕ
С различными волнами человек встречается повсюду, начиная от гамма-лучей с очень маленькой длиной волны до огромных волновых перемещений в облаках рассеянной между звёздами волновой пыли. Но так как все волны переносят энергию, то и их поведение во многом одинаково.
В однородной среде волны распространяются по прямым линиям с постоянной скоростью, изменяя направление и скорость в тех местах, где изменяются физические свойства среды.
Волны на поверхности жидкости [2] представляют собой волны, возникающие и распространяющиеся по свободной поверхности жидкости или на поверхности раздела двух несмешивающихся жидкостей. Эти волны образуются под влиянием внешнего воздействия, в результате которого поверхность жидкости выводится из равновесного состояния (например, при падении камня). При этом возникают силы, восстанавливающие равновесие: силы поверхностного натяжения и тяжести. В зависимости от природы восстанавливающих сил волны на поверхности жидкости подразделяются на:
- капиллярные волны, если преобладают силы поверхностного натяжения,
- гравитационные, если преобладают силы тяжести,
- гравитационно-капиллярные, когда совместно действуют силы тяжести и силы поверхностного натяжения.
На примере воды можно рассмотреть колебательно-волновые движения поверхности однородной жидкости, находящейся в гравитационном поле при малых отклонениях от положения равновесия.
В общем случае на поверхности воды можно наблюдать и уединённые волны – солитоны, и цуги разных волн – гладких, заострённых или имеющих угловатую форму. Эти волны имеют длины от миллиметров до тысяч километров и периоды от долей секунды до суток. Рябь, мёртвая зыбь, различные ветровые волны, сейши, волны вокруг движущихся судов, цунами и приливные волны – это всё варианты поверхностных волн на воде. Очень различна и крутизна волн, которая характеризуется отношением высоты волны к её длине. Многочисленны и причины возникновения волн: от ветра и падения или обтекания предметов до землетрясений и движения Луны и Солнца.
Проблема изучения причин возникновения и поведения волн очень важна для анализа волновой картины при различных способах и параметрах возмущения поверхности. Волновые процессы встречаются почти во всех областях физических явлений, поэтому их изучение имеет большое значение и является в настоящее время актуальной задачей .
Изучение волн одного типа позволяет узнать, что можно ожидать от волн других типов.
Именно этим решили заняться школьники, члены НОУ «Юный исследователь» при МОУ «Вислодубравская сош»..
Цель нашей работы: на примере воды рассмотреть колебательно-волновые действия поверхности однородной жидкости, находящейся в гравитационном поле при малых отклонениях от положения равновесия.
Для этого надо было решить следующие задачи:
- Провести исследование поверхностных волн с длинами порядка 1см, возбуждаемых периодически и импульсивно;
-рассмотреть отражение волн, интерференцию волн,
-проверить эффект Доплера.
- В исследуемом диапазоне волн пронаблюдать как гравитационное воздействие на жидкость, так и поверхностное натяжение.
- Провести анализ данных, полученных в ходе исследования.
Для решения поставленных задач нами применялись следующие методы:
- Для выполнения практической части работы изготовлена ванна с регулируемой глубиной, что позволило наблюдать основные колебательно-волновые феномены при сравнительно слабом возмущении поверхности воды.
- Фокусировка волн в волновой ванне проводилась с использованием
различных искусственных барьеров.
- Для выполнения расчётов использовались таблицы [8].
ОСНОВНАЯ ЧАСТЬ
Практическая часть работы выполнена с использованием установки, представленной на рис.1,2 (приложениеI). Данная волновая ванна изготовлена в домашних условиях. Основная её часть состоит из деревянной рамки 1 со стеклянным дном (460х355). Толщина рамки около 2 см, площадь стеклянного дна ≈ 0,16 м2 . Чтобы вода не протекала, дно по периметру прикреплено к рамке мастикой. Ванна установлена на четырёх ножках на высоте ≈ 0,5 м от пола. В качестве источника света для отбрасывания теней от ряби на экран 2, расположенный под стеклом, используется настольная лампа 3 , расположенная на высоте около полуметра над ванной. Корпус лампы с источником света помещён в коробку из огнеупорного картона, в которой проделано отверстие 4 , чтобы получить точечный источник света.
Деревянная перекладина 5 закрепляется на двух кронштейнах 6. К ней на резинках подвешен брусок, служащий для возбуждения волн. Расстояние между бруском и водой регулируется изменением металлических кронштейнов и укорачиванием или удлинением резиновых подвесов.
В середине бруска при помощи деталей 7 детского конструктора закреплена батарея для игрушечного мотора. Жёстким проводом, согнутым под прямым углом, к бруску прикреплены две стеклянные бусины 8,диаметром около 1 см. Кроме этого с помощью шарниров укреплены ещё две бусины 9 меньшего диаметра. К валу мотора прикреплён винт длиной 2 см, выполняющий роль эксцентрического груза. Скорость мотора регулируется обычным реостатом.
По внутреннему краю ванны проложена мягкая сетка из алюминия 10, загнутая под прямым углом и покрытая одним слоем марли 11, служащая для предотвращения энергии набегающих волн.
Прибор выравнивается, ванна заполняется водой на глубину 2 см. После включения лампы подключают вывод мотора к стальной пружине. Нужно установить высоту деревянного бруска так, чтобы один из стеклянных шариков касался воды. Вращение эксцентрического груза заставляет вибрировать прямоугольный кронштейн, а шарик – подниматься и опускаться в воде.
Длина волны изменяется в зависимости от скорости мотора. Контрастность между светом и тенью волновой картинки, проектируемой на экран, регулируется поворотом лампы.
I.Установим прибор так, чтобы он возбуждал плоские волны с расстоянием между гребнями около 5 см. Наблюдаем, что волны расходятся от источника к переднему краю ванны и там поглощаются.
II. Установим лампу так, чтобы контрастность была максимальной. В ванне под углом 45 градусов поставим барьер из парафина и посмотрим, как отражаются волны. При установлении барьера под другим углом ( меньшим 45 градусов) и изменении длины волны, можно наблюдать, что угол падения равен углу отражения.
III. Для того, чтобы энергию волн можно было сфокусировать, рассеять или как-то распределить, используют барьеры различной формы.
Воспроизведём фокусировку волн в волновой ванне. Сделаем барьер из парафина в форме параболы и направим на него плоские волны.
Наблюдаем, что от любой точки барьера отражённые волны пойдут к одной и той же точке – фокусу параболы. Наоборот, круговая волна, возникающая в фокусе, отражается от параболического барьера и становится плоской. В этом опыте волна создана а)каплей воды из пипетки и б)пластилиновым шариком (рис.4,5) (приложение III).Сравнивая результаты наблюдений, можно отметить, что в этих случаях наблюдается одна и та же картина, но из-за разной плотности воды и пластилина отражённые волны во втором случае направляются к фокусу параболы с большей скоростью.
IV. Заменим парафиновый барьер стеклянной пластинкой ( ширина 15 см, длина 30 см).Установим пластинку таким образом, чтобы верхняя поверхность была на расстоянии 1 см от дна ванны. Ванну наполним водой так, чтобы расстояние от стекла до поверхности воды составляло 2-3 мм, создадим плоские волны.
Можно заметить, как замедляются волны при пересечении края стекла и столкновении с мелкой водой. Из-за изменения скорости волны отклоняются от первоначального направления за счёт преломления – явления, наблюдаемого у волн всех типов, когда они попадают под углом из одной среды в другую, в которой распространяются с другой скоростью.
По таблицам [8] определим плотность воды и плотность воздуха, найдём показатель преломления на границе двух сред:
ρводы =1000 кг/м3 , ρвоздуха = 1,293 кг/м3 , σводы =0,073 Н/м.
Приблизительно можно считать, что отношение скоростей распространения волн в мелкой и глубокой воде пропорционально отношению глубин воды. Это отношение есть показатель преломления на границе двух сред.
V. Рассмотрим распространение волн в однородной среде от двух и более источников. Видим, что они распространяются независимо друг от друга (рис.6,7) (приложение IV). При совпадении гребней волн от двух источников амплитуды волн складываются; если же гребень одной волны совпадает с впадиной другой волны той же амплитуды, то волны взаимно уничтожаются. Здесь наблюдалось явление интерференции волн.
Установим в волновой ванне два шарика так, чтобы они касались воды на расстоянии 5 см друг от друга (рис 3) (приложение II). Максимум амплитуды возникает там, где совпадают гребни волн, а узлы – там, где гребни совпадают с впадинами.
Установим в волновой ванне решётку из равномерно расположенных штифтов (рис.8,9) (приложение V). Когда плоские волны последовательно наталкиваются на решётку, от каждого штифта расходятся круговые волны, которые интерферируют и снова образуют плоские волны.
VI. Рассмотрим волны на поверхности за движущимся источником. С точки зрения теории, волны, возбуждаемые на поверхности воды за движущимся судном, есть не что иное, как излучение Вавилова-Черенкова [5] . Эффект усложняется дисперсией среды[4,6] . Зная картину волн от точечного источника, можно составить представление об общей картине и в этом случае.
Пронаблюдаем волновую картину за движущимся цилиндром. Для этого возьмём в руку иголку или разогнутую канцелярскую скрепку и, держа её вертикально, проведём по поверхности воды с различной скоростью. Характерные размеры возмущения соответствуют возбуждению в основном капиллярных волн. Такие волны обгоняют источник, так как групповая скорость больше фазовой. Установим, что при малых скоростях волны не возбуждаются.
Увеличивая скорость движения цилиндра, наблюдаем появление за ним дорожки вихрей. Её называют дорожкой Кармана [1] . Из-за поверхностного натяжения в жидкости дорожка оказывается как бы обтянутой плёнкой (подобно резиновой трубке или натянутой струне). Под влиянием случайных внешних воздействий эта плёнка деформируется, и в ней начинаются колебания. Колебания распространяются по поверхности, в дорожке возникают поверхностные волны, т.е. капиллярные волны [5,6,11] . Качественно объяснить механизм их образования можно так:
Пусть поверхность жидкости в некотором месте случайно изогнулась, например, стала вогнутой (рис.10,а) (приложение VI). Давление в жидкости под вогнутой поверхностью, благодаря силам поверхностного натяжения, меньше, чем в соседних областях, где поверхность осталась плоской. Под действием разности давлений жидкость из соседних участков начнёт приливать под вогнутую поверхность, пока поверхность снова не станет плоской. Но движение жидкости не прекратится и будет продолжаться по инерции. Поэтому поверхность станет выпуклой, давление под ней возрастёт, и жидкость будет вытекать из-под неё (рис.10,б) (приложение VI) . Такие колебания в жидкости естественно вызовут аналогичные колебания в соседних участках, то есть возникнет волна.
Так как поверхностные волны возникают и под действием силы тяжести[10,11] , нужно отметить, что при малых амплитудах колебаний и малых длинах волн основную роль играют силы поверхностного натяжения. Волны в этом случае называются капиллярными. [3]
Можно непосредственно на опыте убедиться в том, что и в струе при наличии преграды возникают именно поверхностные волны. Коснёмся остриём иголки только поверхности струи – получается тот же результат, как при внесении преграды по всему сечению струи.
Проделаем несколько опытов. Получим некоторые количественные закономерности. Теоретический расчёт показывает, что скорость распространения капиллярных волн зависит от свойств жидкости (коэффициента поверхностного натяжения и плотности) и от длины волны. Причём скорость увеличивается с уменьшением длины волны [1,4,6] . Проверим это экспериментально.
Длину волны λ можно измерить непосредственно линейкой.
Так как и в струе воды возникают поверхностные волны, найдём скорость течения воды в струе.
Объём V воды, вытекающий из крана за время t , равен
V=Svt =(πd2 /4)*(vt), где
S –площадь сечения струи, d – диаметр этого сечения,
v – скорость вытекания воды, равная скорости распространения волны.
Получим, что v= (4V)/ (πd2 t).
Объём воды измерим с помощью мензурки, диаметр струи – линейкой, время – секундомером.
Определение скорости распространения поверхностных волн Таблица1
№ | λ, см | V,см3 | d, см | t, с | v,см/с |
1 | 0,6 | 6.98 | 0,5 | 5 | 45 |
2 | 0,5 | 14.57 | 0,5 | 10 | 47 |
3 | 0,4 | 27.9 | 0,5 | 15 | 60 |
4 | 0,3 | 40.3 | 0,5 | 20 | 65 |
5 | 0,2 | 56.58 | 0,5 | 25 | 73 |
6 | 0,1 | 97.65 | 0,5 | 30 | 105 |
Из таблицы1 видно, что экспериментальные данные подтверждают предположение о том, что скорость волны уменьшается с увеличением длины волны[9] . Кроме того, из расчётных данных можно сделать вывод, что на поверхности воды не могут существовать волны, распространяющиеся со скоростью меньше 23 см/с.
Полученный график зависимости между λ и v показан на рис.16 (приложение VII).
VII. Используя пипетку и пластилиновый шарик, рассмотрим как расходятся круги на воде и сравним результаты.
VIII. Исследуем с помощью волновой ванны эффект Доплера[4] . Доплер обнаружил, что повышение тона свистка у быстро приближающегося поезда и смещение цвета движущейся к земле звезды в сторону синей части спектра – явление одной природы. Оба явления обусловлены тем, что движущиеся источники волн могут догонять, а иногда и перегонять испускаемые ими волны.
Для демонстрации эффекта Доплера возьмём небольшую трубочку, которая с помощью мембраны, приводимой в действие соленоидом, направляет в ванну через равные промежутки времени порции воздуха, одновременно двигаясь по ванне с заданной скоростью.
Смонтируем у края ванны несколько участков игрушечной железной дороги и установим трубочку в игрушечном вагончике (рис.11,12) (приложение VIII). Когда трубочка перемещается со скоростью, меньшей скорости волн, гребни перед ней располагаются более часто, а позади – более редко.
Эффект Доплера наблюдается в различного рода волнах, в том числе радиоволнах[3]. Пользуясь сравнительно несложной аппаратурой, можно по радиосигналам искусственного спутника, учитывая эффект Доплера, определить величину и направление скорости спутника.
ЗАКЛЮЧЕНИЕ
Поверхностные волны выделены в отдельную группу, т.к, по словам Р.Фейнмана, «…эти волны нисколько не похожи ни на звук, ни на свет, здесь собраны все трудности, какие могут быть в волнах». При формировании волн на поверхности рек и различных водоёмов сочетание различных физических процессов бывает настолько трудно учитываемым ( плюс ко всему ещё и эффект удара при приближении к берегу),что многие процессы, происходящие при этом, до настоящего времени полностью не изучены и не описаны (например, процесс возникновения изогнутой волны). Вместе с тем, изучение поверхностных волн имеет большое практическое значение для судостроения, при проектировании и эксплуатации гидросамолётов и т.д.
Анализ полученных данных показывает, что поверхностные волны обладают всеми свойствами, присущими всем остальным видам волновых процессов.
Изучение волновых процессов на примере поверхностных волн, возбуждаемых на поверхности воды в плоской волновой ванне, изготовленной в домашних условиях, позволяет исследовать дисперсионные характеристики гравитационно-капиллярных волн на поверхности жидкости, провести изучение явлений дифракции и интерференции, отражения, проверить эффект Доплера.
Проведено опытным путём измерение скорости распространения поверхностных волн, из которого можно сделать вывод, что на поверхности воды не могут существовать волны, распространяющиеся со скоростью меньше 23 см/с.
Скорость распространения волн на поверхности жидкости зависит от длины волны. При возрастании длины волны скорость распространения гравитационно-капиллярных волн сначала убывает до некоторого минимального значения, а затем снова возрастает.
Мне представляется важным и необходимым в настоящее время изучение волн на поверхности однородной жидкости, находящейся в гравитационном поле при малых отклонениях от положения равновесия.
Считаю необходимым:
- ознакомить с полученными в ходе работы результатами учащихся нашей школы с целью привития интереса к физике как к предмету, вынесенному для сдачи в 9 и 11 классах в форме ЕГЭ, для этого использовать фото- и видеоматериалы, полученные в процессе проведения исследования;
- продолжить исследование волн на поверхности других жидкостей с целью определения скорости распространения этих волн, коэффициента поверхностного натяжения жидкости и изучения других ёё свойств; сравнить полученные результаты и сделать выводы;
Предлагаю:
- провести Интернет-форум среди учащихся Губкинской территории по данному вопросу;
- провести конкурс на изобретение в домашних условиях оригинальной установки для изучения волн на поверхности однородной жидкости.