Учебная программа Дисциплины 08 «Численное моделирование в акустике и гидродинамике» по направлению 011800 «Радиофизика» Нижний Новгород 2011 г
Вид материала | Программа дисциплины |
- Учебная программа Дисциплины 02 «Оптимальная обработка сигналов» по направлению 011800, 182.9kb.
- Учебная программа Дисциплины р7 «Специальная теория относительности» по направлению, 98.91kb.
- Учебная программа Дисциплины р11 «Физика твердого тела» по направлению 011800 «Радиофизика», 98.02kb.
- Учебная программа Дисциплины б10 «Радиоэлектроника» по направлению 011800 «Радиофизика», 133.79kb.
- Учебная программа Дисциплины дс. 05 «Квантовая радиофизика» по специальности 010801, 162.47kb.
- Основная образовательная программа высшего профессионального образования Направление, 4760.96kb.
- Учебная программа Дисциплины р4 «Оптические методы диагностики биотканей» по направлению, 154.6kb.
- Учебная программа Дисциплины б12 «Компьютерная графика» по направлению 010300 «Фундаментальная, 168.96kb.
- Учебная программа Дисциплины б4 «Алгоритмы и анализ сложности» по направлению 010300, 131.48kb.
- Учебная программа Дисциплины р4 «Теория электрических цепей» по направлению 010300, 234.27kb.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
«Нижегородский государственный университет им. Н.И. Лобачевского»
Радиофизический факультет
Кафедра акустики
УТВЕРЖДАЮ
Декан радиофизического факультета
____________________Якимов А.В.
«18» мая 2011 г.
Учебная программа
Дисциплины М2.В4.08 «Численное моделирование в акустике и гидродинамике»
по направлению 011800 «Радиофизика»
Нижний Новгород
2011 г.
1. Цели и задачи дисциплины
Курс “Численное моделирование в акустике и гидродинамике” является продолжением спецкурсов “Акустика океана” и “Нелинейные случайные волны и турбулентность в средах без дисперсии”. Он базируется на знаниях студентов, приобретенных в курсах высшей математики (математический анализ, дифференциальные уравнения, векторный анализ), методов математической физики, программирования, а также общих курсов физического цикла (механика сплошных сред, теория колебаний) и специальных курсов.
Содержание дисциплины направлено на изучение вычислительных методов применительно к задачам распространения и рассеяния акустических волн. Основное внимание при чтении лекций уделяется численному моделированию в задачах распространения акустических сигналов в нелинейных средах различной физической природы.
2. Место дисциплины в структуре магистерской программы
Дисциплина «Численное моделирование в акустике и гидродинамике» относится к дисциплинам по выбору студента вариативной части профессионального цикла основной образовательной программы по направлению 011800 «Радиофизика».
3. Требования к уровню освоения содержания дисциплины
В результате освоения дисциплины формируются следующие компетенции:
- способностью использовать базовые знания и навыки управления информацией для решения исследовательских профессиональных задач, соблюдать основные требования информационной безопасности, защиты государственной тайны (ОК-l0);
- способность к свободному владению знаниями фундаментальных разделов физики и радиофизики, необходимыми для решения научно-исследовательских задач (в соответствии со своим профилем подготовки) (ПК-1);
- способность к свободному владению профессионально-профилированными знаниями в области информационных технологий, использованию современных компьютерных сетей, программных продуктов и ресурсов Интернет для решения задач профессиональной деятельности, в том числе находящихся за пределами профильной подготовки (ПК-2);
- способность использовать в своей научно-исследовательской деятельности знание современных проблем и новейших достижений физики и радиофизики (ПК-3);
- способность самостоятельно ставить научные задачи в области физики и радиофизики (в соответствии с профилем подготовки) и решать их с использованием современного оборудования и новейшего отечественного и зарубежного опыта (ПК-4).
В результате изучения студенты должны:
Знать основные методы численного расчета полей гидроакустического типа в неоднородных и нелинейных акустических средах.
Уметь применять методы вычисления различных статистических характеристик акустических сигналов для решения практических задач.
Иметь представление об основных методах численного моделирования в акустике и гидродинамике с использованием цифровой обработки сигналов в среде МATLAB.
4. Объем дисциплины и виды учебной работы
Общая трудоемкость дисциплины составляет 2 зачетные единицы, 72 часа.
Виды учебной работы | Всего часов | Семестры |
Общая трудоемкость дисциплины | 72 | 11 |
Аудиторные занятия | 32 | 32 |
Лекции | 32 | 32 |
Практические занятия (ПЗ) | 0 | 0 |
Семинары (С) | 0 | 0 |
Лабораторные работы (ЛР) | 0 | 0 |
Другие виды аудиторных занятий | 0 | 0 |
Самостоятельная работа | 40 | 40 |
Курсовой проект (работа) | 0 | 0 |
Расчетно-графическая работа | 0 | 0 |
Реферат | 0 | 0 |
Другие виды самостоятельной работы | 0 | 0 |
Вид итогового контроля (зачет, экзамен) | зачет | зачет |
5. Содержание дисциплины
5.1. Разделы дисциплины и виды занятий
№ п/п | Раздел дисциплины | Лекции | ПЗ (или С) | ЛР |
1 | Введение | 2 | | |
2 | Общие принципы численного анализа | 4 | | |
3 | Интегрирование обыкновенных дифференциальных уравнений | 4 | | |
4 | Метод нормальных волн | 6 | | |
5 | Метод параболического уравнения | 4 | | |
6 | Линейные волновые уравнения | 4 | | |
7 | Нелинейные эволюционные уравнения акустики | 4 | | |
8 | Эволюционные уравнения параболического типа | 4 | | |
5.2. Содержание разделов дисциплины
I. ВВЕДЕНИЕ
Волновое уравнение и граничные условия. Обзор и сравнение различных численных методов расчета звуковых полей в неоднородных волноводах (лучевой метод, метод нормальных волн, метод параболического уравнения, метод суммирования гауссовых пучков).
II. ОБЩИЕ ПРИНЦИПЫ ЧИСЛЕННОГО АНАЛИЗА
Функция дискретного аргумента. Гребневая функция Дирака. Спектр дискретной функции, периодичность спектра. Частота Найквиста. Явление наложения частот. Взаимосвязь функции и спектра при дискретизации. Восстановление оригинала по спектру дискретной функции. Теорема Котельникова-Шеннона. Дискретное преобразование Фурье. Ортогональность гармоник. Формулы анализа и синтеза Фурье. Быстрое преобразование Фурье. Алгоритм, эффективность метода. Цифровая обработка сигналов в среде МATLAB
III. ИНТЕГРИРОВАНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
Задача Коши. Метод Эйлера, метод с перешагиванием. Условие устойчивости для нарастающих, убывающих и осциллирующих линейных уравнений. Явные схемы второго порядка точности. Схема Рунге-Кутта, "предиктор-корректор". Схема Рунге-Кутта четвертого порядка точности.
IV. МЕТОД НОРМАЛЬНЫХ ВОЛН
Основные уравнения, граничные условия и проблемы, возникающие при численном решении задачи. Алгоритмы вычисления собственных значений и собственных функций (метод возмущений, метод конечных разностей, приближение ВКБ). Адиабатическое приближение метода нормальных волн.
V. МЕТОД ПАРАБОЛИЧЕСКОГО УРАВНЕНИЯ
Вывод однонаправленного волнового уравнения. Анализ ошибок однонаправленного волнового уравнения для различных аппроксимаций квадратного корня из оператора поперечной диффузии (ряд Тейлора, аппроксимация Паде, равномерная рационально-линейная аппроксимация). Построение конечно-разностной схемы Кранка–Николсона. Метод прогонки. Функция источника
VI. ЛИНЕЙНЫЕ ВОЛНОВЫЕ УРАВНЕНИЯ
Схема бегущего счета для уравнения переноса. Дисперсия волн на сетке, диффузия волн на сетке. Условие устойчивости. Уравнения переноса. Безусловно устойчивые схемы. Схема Лакса и Лакса–Вендроффа. Волновое уравнение. Природа сеточной дисперсии. Волны в цепочках. Схема типа крест и ее устойчивость.
VII. НЕЛИНЕЙНЫЕ ЭВОЛЮЦИОННЫЕ УРАВНЕНИЯ АКУСТИКИ
Уравнение простых волн. Разрывы в решении и псевдовязкость. Консервативная разностная схема. Уравнение простых волн. Спектральный подход. Возникновение осцилляций Гиббса. Метод расщепления для эволюционных уравнений нелинейной акустики (уравнения Бюргерса, нелинейных звуковых пучков). Расщепление по физическим факторам, основные методы интегрирования. Выбор схемы, шага, сравнение эффективности различных схем.
VIII. ЭВОЛЮЦИОННЫЕ УРАВНЕНИЯ ПАРАБОЛИЧЕСКОГО ТИПА
Явная схема интегрирования линеаризованного уравнения Бюргерса. Погрешность аппроксимации, условие устойчивости. Численное интегрирование линеаризованного уравнения Бюргерса. Схемы с весами, Кранка–Николсона. Погрешность аппроксимации, условие устойчивости. Неявные схемы интегрирования. Метод исключения Гаусса. Спектральный метод. Сеточная дисперсия погрешность аппроксимации, условие устойчивости.
6. Лабораторный практикум
Не предусмотрен.
7. Учебно-методическое обеспечение дисциплины
7.1 Рекомендуемая литература.
а) основная литература:
- Флетчер К. Вычислительные методы в динамике жидкостей: В 2-х томах. М.: Мир, 1991.
- Бреховских Л.М., Лысанов Ю.П. Теоретические основы акустики океана. Л: Гидрометеоиздат, 1982.
- Флетчер К. Численные методы на основе метода Галеркина. М.: Мир, 1988.
- Сергиенко А.Б. Цифровая обработка сигналов. СПб.: Питер, 2006.
- Руденко О.В., Солуян С.И. Теоретические основы нелинейной акустики. М.: Наука, 1975.
б) дополнительная литература:
- Распространение звука во флуктуирующем океане. Под ред. С.Флатте. М: Мир, 1984.
- Отнес Р., Эноксон Л. Прикладной анализ временных рядов. Основные методы. М.: Мир, 1982.
- Бахвалов Н.С., Жилейкин Я.М., Заболотская Е.А. Нелинейная теория звуковых пучков. М.: Наука, 1982.
8. Вопросы для контроля
- Волновое уравнение и граничные условия. Обзор и сравнение различных численных методов расчета звуковых полей в неоднородных волноводах
- Спектр дискретной функции, периодичность спектра. Частота Найквиста. Теорема Котельникова-Шеннона. Дискретное преобразование Фурье. Быстрое преобразование Фурье
- Задача Коши. Метод Эйлера, метод с перешагиванием.
- Алгоритмы вычисления собственных значений и собственных функций (метод возмущений, метод конечных разностей, приближение ВКБ). Адиабатическое приближение метода нормальных волн.
- Параболическое уравнение. Анализ ошибок однонаправленного волнового уравнения для различных аппроксимаций квадратного корня из оператора поперечной диффузии (ряд Тейлора, аппроксимация Паде, равномерная рационально-линейная аппроксимация). Метод прогонки. Функция источника
- Уравнение простых волн. Разрывы в решении и псевдовязкость. Консервативная разностная схема. Уравнение простых волн. Спектральный подход.
- Метод расщепления для эволюционных уравнений нелинейной акустики (уравнения Бюргерса, нелинейных звуковых пучков). Расщепление по физическим факторам, основные методы интегрирования. Выбор схемы, шага, сравнение эффективности различных схем.
- Численное интегрирование линеаризованного уравнения Бюргерса. Схемы с весами, Кранка–Николсона. Погрешность аппроксимации, условие устойчивости. Неявные схемы интегрирования. Метод исключения Гаусса. Спектральный метод. Сеточная дисперсия погрешность аппроксимации, условие устойчивости.
9. Критерии оценок
Зачтено | Удовлетворительное знание содержания курса |
Не зачтено | Неудовлетворительное знание содержания курса |
10. Примерная тематика курсовых работ и критерии их оценки
Курсовые работы не предусмотрены
Программа составлена в соответствии с Государственным образовательным стандартом по направлению 011800 «Радиофизика».
Автор программы _________________ Демин И.Ю.
Программа рассмотрена на заседании кафедры 22 марта 2011 года протокол № 2010-2011/5.
Заведующий кафедрой ___________________ Гурбатов С.Н.
Программа одобрена методической комиссией факультета 11 апреля 2011 года
протокол № 05/10
Председатель методической комиссии_________________ Мануилов В.Н.