Дж. Реале и Д. Антисери Западная философия от истоков до наших дней. От романтизма до наших дней (4)
Вид материала | Закон |
- Книга Дж. Реале и Д. Антисери "Западная философия от истоков до наших дней" представляет, 4389.95kb.
- Вычитка: 19. 09. 2004, 4157.1kb.
- И Д. Антисери западная философия от истоков до наших дней Книга, 10577.52kb.
- Литература народов стран зарубежья (европейская и американская литературы). Рекомендуемая, 718.07kb.
- От возрождения до канта, 4358.19kb.
- Положение о конкурсе «Профессионалы наших дней» Общие положения, 41.01kb.
- История отечества с древнейших времен до наших дней, 13875.33kb.
- История России с древнейших времен до наших дней в вопросах и ответах, 10053.95kb.
- Лекции по Истории и методологии биологии Основная литература: История биология (с древнейших, 1128.78kb.
- Терроризм. От истоков и до наших дней, 673.2kb.
Глава 37. Логика, математика, физика и биология в ХХ веке
1. РАЗВИТИЕ ЛОГИКИ И МАТЕМАТИКИ В ХХ ВЕКЕ
1.1. Поиск оснований и открытие антиномий теории множеств
Программа концептуальной ригоризации основных математических понятий, как мы уже знаем, наметилась еще в прошлом веке. Вейерштрасс и его школа подготовили так называемую «арифметизацию» анализа, т. е. редукцию математики как теории «действительных чисел» к арифметическим понятиям математики как теории целых позитивных (натуральных и рациональных) чисел. Еще раньше геометрия была приведена к анализу (посредством операций аналитической геометрии), а арифметика стала «естественной базой» всего здания математики. Редукцию математики к арифметике завершил Пеано в 1899 г. Система Пеано состояла из пяти аксиом, составленных с помощью примитивных терминов: число, ноль, непосредственно выводимый.
Аксиомы таковы: 1) ноль — это число; 2) из числа непосредственно следует число; 3) ноль непосредственно не следует ни из какого числа; 4) из различных чисел следуют разные непосредственно выводимые числа; 5) любое свойство, которым обладает ноль, принадлежит всем числам, если из его справедливости для одного числа следует справедливость этого свойства для числа, непосредственно следующего за ним (это принцип математической индукции).
Одновременно с Пеано Фреге и Кантор попытались редуцировать арифметику и понятие натурального числа к логическому понятию класса, тем более что логика классов кажется более адекватной для поиска оснований математики. Как можно дать определение числа в терминах класса, показывает следующий пример. Даны два класса А и В, и каждому элементу класса А соответствует элемент класса В, и наоборот. Это значит, что оба класса имеют равную мощность, или кардинальное число. Используя чисто механические операции,
646 Развитие наук в XX веке
2. РАЗВИТИЕ ФИЗИКИ В XX ВЕКЕ
2.1. Общие вопросы
Развитие физики в XIX веке закончилось крахом механистической программы исследования. Нынешняя физика, отказавшаяся от линейных моделей, характеризуется фундаментальным программным дуализмом. Первая программа возникла в первые десятилетия нашего столетия — релятивистская программа Эйнштейна. А в конце прошлого века с открытием явления радиации возникли квантовая теория и соответствующая исследовательская программа. Эти программы хотя и пересекаются, все же относятся к разным уровням наблюдения. Обе отталкиваются от классической физики в вопросе рассмотрения физических величин в пределах нашего повседневного опыта. Только квантовая теория необходима для изучения феноменов на микроскопическом уровне (атомы, ядерные и субъядерные феномены), а теорию относительности интересуют астрономические скорости и расстояния. Два этих направления
650 Развитие наук в XX веке
поначалу развивались независимо друг от друга. Исследование ядра и его составляющих продвигалось вместе с квантовой теорией.
2.2. Эйнштейн и теория относительности
На рубеже двух веков предпринята не одна попытка преодолеть разрыв теорий Максвелла и Ньютона. Последняя принадлежит А. Пуанкаре на основе классического принципа относительности Лоренца. Идея эфира в ней сохранена, как и законы движущихся относительно друг друга прямолинейным и равномерным образом систем. Работы Лоренца и Максвелла появились в конце XIX— начале XX веков.
Однако в 1905 г. А. Эйнштейн (1879—1955) опубликовал историческую статью «К электродинамике движущихся сред», где были сформулированы принципы частной теории относительности. «Явления в электродинамике, — писал он, — так же, как и в механике, не обладают свойствами, относящимися к идее абсолютного покоя... законы электродинамики и оптики распространяются на все системы отсчета, включая механические». Эйнштейн предложил в качестве постулата другой тезис, согласно которому «свет распространяется в пустом пространстве с определенной скоростью, которая не зависит от движения испускающего свет тела». Первый постулат элиминирует эфир, второй видимым образом ему противоречит. Однако Эйнштейн переосмысливает традиционные понятия пространства и времени. Контраст с привычным опытом демонстрируют следующие теоремы:
— длина тела, находящегося в движении, больше длины покоящегося тела;
— два одновременных по отношению к наблюдателю явления могут быть неодновременными один по отношению к другому;
— длина стержня связана с направлением его движения: масса тела увеличивается с увеличением скорости.
Наконец, знаменитая формула E = mс2 связала массу с энергией. Все эти выводы были подкреплены множеством экспериментов. Переход от классической механики к частной теории относительности был назван Куном научной революцией, ибо произошла глобальная смена основания теории. Только через одиннадцать лет Эйнштейн предложил более обобщенную, чем прежняя, теорию. Законы физики не меняются в любой системе отсчета, даже в системе, движущейся с ускорением, если учитываются гравитационные эффекты, — такова суть общей теории относительности. Эйнштейн констатирует, что масса тела остается постоянной, если она
Эйнштейн; Планк 651
измерена согласно общему закону гравитации (второму закону динамики: инерционная масса равна гравитационной массе).
Отсюда следует возможность соотнесения любого эффекта ускорения с соответствующими гравитационными полями, что меняет геометрическую структуру пространства. Получается, что любая физическая проблема решается, в конечном счете, через изучение геометрических свойств пространства. Общая теория относительности включает в себя как элемент частную теорию относительности, сохраняя все ее выводы и присоединяя к ним новые, вытекающие из новых экспериментальных данных. Среди последних — точные траектории движения планет, искривление светового луча в гравитационном поле и смещение спектральных линий в зоне света, испускаемого звездами большой массы. Так был открыт путь развития «нормальной» науки со все более мощной разработкой математического аппарата, с одной стороны, и, с другой — с проверкой теоретических конструкций экспериментальными данными, что всегда давало позитивный результат. Из новейших экспериментов на эту тему наиболее интересными представляются те, что связаны с изучением гравитационных волн космического происхождения.
2.3. Квантовая теория
Другой путь исследований — изучение взаимодействия материи и радиации. Термин «квант» связывают с именем М. Планка (1858—1947). Это проблема «черного тела» (абстрактное математическое понятие для обозначения объекта, аккумулирующего всю энергию и превращающего ее в тепло). Функция, выражающая энергию абсолютно «черного тела», изменяющего температуру, оказалась несовместимой с термодинамикой, а значит, и классической механикой.
Решение Планка состояло в гипотезе, что энергия выделяется и аккумулируется материей не в форме непрерывной радиации, а только множеством порций определенного количества, пропорционального частоте радиации v и некой постоянной h (постоянная Планка). Количество Av названо «квантом энергии», а постоянная h — «квантом действия». Интересно с концептуальной точки зрения то, что Планк (как и Эйнштейн) не пытался согласовать свое открытие с экспериментальной очевидностью. Именно Эйнштейн дал первое обоснование теории Планка. Он предположил, что любая радиация квантуется. Частицу, соответствующую радиации с частотой v, имеющую энергию hv и количество движения h v/c, назвали фотоном. Так фотоэлектронный эффект был вписан в общую теорию и ею подтвержден.
652 Развитие наук в XX веке
Неодарвинизм 653
В книге «Логика научного открытия» Поппер, характеризуя этот тип концепций, заметил, что он накладывает принципиальные ограничения на возможности научного познания (подобно пределу, налагаемому скоростью света). Стало очевидным, что движение вперед теперь невозможно, если не поставить задачу выхода за пределы достигнутых рубежей. Для физической теории настал период «нормальной» науки, хотя скорее с двумя парадигмами, чем с одной.
3. БИОЛОГИЯ ПОСЛЕ ДАРВИНА
3.1. Неодарвинизм: Вейсман и де Фриз
От Дарвина мы узнали, что: 1) виды не неизменны, ибо они эволюционируют, давая постепенно начало различным видам; 2) основной механизм эволюции видов — естественный отбор. Среда провоцирует индивидуальные различия, делая ненужными индивиды с неблагоприятными признаками, поощряя более жизнеспособные особи, побеждающие в «борьбе за существование». Ясно, что отбор эффективен, если индивидуальные различия подлежат передаче и наследованию. В противном случае теория Дарвина вряд ли возникла бы. Однако если особи одного вида различны, то возникает два вопроса: 1) Каковы причины индивидуальных различий? 2) Если различия наследуются, то как они передаются?
Дарвин объяснял механизм наследования приобретенных свойств воздействием среды. Ламарк, как известно, видел внутреннюю тенденцию к совершенствованию. Последнюю точку зрения защищал швейцарец Карл Вильгельм фон Нёгели (1817—1891) своей теорией ортогенеза (разновидность греческого понятия энтелехии), в разговоре о психохимическом аналоге инерционной механической силы.
Немецкий зоолог Август Вейсман (1834—1914), представитель неодарвинизма, отверг идею наследуемости приобретенных свойств. В подтверждение своей концепции он отрезал хвосты у новорожденных мышей нескольких поколений. Затем рождались новые мышата с обычными хвостами, вопреки теории наследования приобретенных черт. Эти и другие опыты подтвердили гипотезу, что не среда на самом деле, а внутренние органические факторы ответственны за наследственную информацию. В «Очерке о наследственности и связанных с ней биологических вопросах» (1892) Вейсман отделил понятие гермоплазмы, ответственной за наследование, от понятия телесной плазмы. Гермоплазма — наиболее ответственная часть организма, она определяет формы и характеристики телесной плазмы. Тело
654 Развитие наук в XX веке
656 Развитие наук в XX веке
Морган провел серию опытов с drosophila melanogaster, насекомым, обладающим только четырьмя парами хромосом и имеющим период созревания от яйца до взрослого состояния 12 дней. Опыты показали, что признаки, наследуемые вместе, иногда все же разделяются. Морган объяснил это тем, что хромосома содержит гены, т. е. разделена на определенные характерные фрагменты, что позволяет ей затем обменяться с похожим фрагментом другой хромосомы.
В 1927 г. Герман Йозеф Мюллер, ученик Моргана, сделал сенсационное открытие. Бомбардируя гамма-лучами гаметы (сперматозоиды и яйца животных, зернышки цветочной пыльцы и семяпочки растений), он получил огромное число мутаций. Суть открытия состояла в том, что был указан путь исследования гена.
К началу Второй мировой войны генетика установила: 1. Гены отвечают за наследственные черты; 2. Гены находятся в линейном порядке в хромосоме; 3. По числу и качеству для каждого вида хромосомный набор — величина постоянная; 4. Несмотря на постоянство, эти структуры способны к изменениям; 5. Изменения, или мутации, разделяются по трем категориям: генные (переход от одного гена к аллельному состоянию), хромосомные (структурные вариации внутри одной хромосомы) и геномные (вариации с числом хромосом).
Следующей сенсацией стало открытие генетического кода — еще одно блестящее достижение человеческого разума в познании развития жизни. Если эволюционная теория помогла понять историю жизни, то не менее важно было понять сам источник жизни. Старый спор: жизнь исходит от материи или же «все живое изначально живо»? Рождается ли организм (например, бактерия) спонтанным образом? Правда, открытие фильтрабильного вируса (ultra virus) представляется серьезным шагом к абиогенезу.
Как бы то ни было, но с вирусами-паразитами нет пока оснований связывать источник жизни. В 1950-х гг. Г. Юри и С. Миллер показали формирование органических комплексов — аминокислот (основа молекул протеинов — базовых элементов протоплазмы). Через смесь воды, водорода, метана и аммиака Миллер пропускал электрический разряд высокой частоты. В результате он получил сложные молекулы аминокислот. И хотя эксперимент недостаточен, чтобы понять проблему зарождения жизни, он приоткрывает завесу над этой тайной.
3.4. Генетический код
Долгое время наследственные механизмы были предметом внимания генетиков, но природа молекул, переносящих информацию от одного индивида к другому, оставалась неведомой. Была известна
Генетика 657
роль макромолекул протеина и нуклеиновых кислот в этом процессе. Однако только в 1944 г. сотрудником Нью-Йоркского института Рокфеллера Эйвери (О. Т. Avery, 1877—1955) были получены результаты, показавшие, что эту роль выполняют молекулы дезоксирибонуклеиновой кислоты — ДНК. Было известно ранее, что ядра клеток животных, содержащих хромосомы (и, стало быть, гены), особенно богаты нуклеиновыми кислотами, в частности ДНК. Последние представляют собой полимеры, образованные из остатков фосфорной кислоты, сахара (дезоксирибоза) с азотистого основания, т. е. аденина, гуанина, цитозина и тимина.
В начале пятидесятых годов вслед за Полингом, который раскрыл структуру протеина, спиралевидной (геликоидальной) макромолекулы, образованной из различных комбинаций 20 аминокислот, удалось понять молекулу ДНК как образованную из комбинаций 4 различных нуклеотидов. Каждый нуклеотид образован из остатков фосфорной кислоты, одной молекулы дезоксирибозы и одного из четырех азотистых оснований.
Были проведены химические и кристаллографические исследования, результаты которых обобщил Э. Чаргафф (E. Chargaff, p. 1905), показавший комплементарность остатков тимина и адеина и остатков цитозина и гуанина в пробах различных ДНК. Идея структурировать молекулярные компоненты ДНК в форме двойной спирали с комплементарными взаимодействиями в азотистых основаниях взаимодополнительным образом — аденин-тимин, цитозин-гуанин — разработана кембриджскими учеными Ф. Криком (F. Crick) и Дж. Уотсоном (J. Watson). Диффракцию х-лучей, необходимых для верификации модели, установил М. Уилкинс (М. Wilkins).
Модель двойной спирали состоит из двух полинуклеотидных цепей, структурные реквизиты которых — азотистые основания и водородные связи между ними. Эта их природа подтверждает процесс дублирования, т. е. формирования двух двойных спиралей, начиная с одной, внутри которой отделяются две нити. В ДНК имеет место так называемая полуконсервативная репликация (повтор): каждое ответвление ДНК дает начало новой двойной спирали. Это подтвердили Мезельсон (Meselson) и Шталь (Stahl).
Помимо ДНК есть другой тип нуклеиновой кислоты — рибонуклеиновая, или РНК, содержащаяся, главным образом, в клеточной цитоплазме. Структура РНК имеет одну нить, но активность РНК имеет решающий характер, ибо вместе с ДНК она образует молекулярную основу механизма генетической передачи. Раздел биологии, изучающий поведение молекул ДНК и РНК в процессе передачи генетической информации, называется молекулярной биологией.
В 1941 г. Дж. У. Билл (G. W. Beadle) и Э. Л. Тейтем (Е. L. Tatum) исследовали формирование энзимов (ферментов). Поскольку эти протеины обладали тоже двойными спиралями и содержали азот, то
658 Развитие наук в XX веке
вскоре выяснилась и последовательность аминокислот протеина. Проблема заключалась в том, как из алфавита с 4 буквами можно образовать группу, содержащую 20 букв. Комбинируя 4 основания (2 x 2), они получили 16 комбинаций, а умножая 3 x 3, получили 64 комбинации, более чем достаточные для кодирования триплет — 21 аминокислоты протеина. Так триплет азотистых оснований кодирует аминокислоту.
В 1955 г. удалось синтезировать РНК С. Очоа (S.Ochoa), в 1956 г. А. Корнберг (А. Kornberg) искусственным путем получил ДНК. Еще через 5 лет Ф. Жакоб (F. Jacob) и Ж. Моно (J. Monod) доказали, что РНК является передатчиком. Макромолекула РНК синтезируется на ДНК (процесс транскрипции) и соединяется в рибосомы, субклеточные частицы цитоплазмы, где и происходит белковый синтез. Передатчик РНК есть своего рода пленка с записью трехчленного кода последовательности аминокислот. Эту «пленку» считывает рибосома, создающая протеин в последовательности, указанной молекулой РНК.
В 1960-х гг. М. У. Ниренберг (М. W. Nirenberg) и Дж. Маттеи (J. N. Matthei) синтезировали молекулу РНК на одной основе урацила. Они получили процесс формирования полипептида, состоящего из одной аминокислоты — полифенилаланина на основе трехчленного урацил-урацил-урацила. Это открытие позволило найти ключ к генетическому коду почти так же, как Розеттский камень помог расшифровать египетские иероглифы. Ниренберг, Крик, Корана и другие выяснили значение всех 64 триплетов, образующих генетический код. Процесс передачи генетической информации от ДНК к РНК называется транскрипцией, а энзим (РНК-полимероза) катализирует синтез передатчика (РНК) по образцу ДНК. Синтез полипептидной цепочки, конкретизирующий информацию, поступающую из ДНК, называется процессом перевода, трансляции.
В целом цепочку белкового синтеза кратко можно представить следующим образом:
Репликация ДНК и транскрипция РНК-передатчика возможны в силу соединения стереоспецифическим образом азотистых оснований: аденин «признает» тимин, а цитозин «признает» гуанин. Процесс трансляции происходит посредством соединительных векторов — молекул Т-РНК Последние задерживаются на рибосоме и «прочитывают» передаваемый генетический код. Аминокислотная цепочка синтезируется на рибосоме с энзиматическим механизмом, необходимым для прочтения записанной информации в РНК.
Генетика 659
Открытие генетического кода позволило внятно объяснить и описать феномены репродукции, наследования, вариаций и мутаций. Оказалось, что на этом универсальном языке «говорят» все организмы — от вирусов и бактерий до животных и человека. Эго стало важнейшим этапом в изучении феномена жизни и ее удивительно разумной основы.
СХЕМА ГЕНЕТИЧЕСКОГО КОДИРОВАНИЯ
660
Карл Раймунд Поппер (р. 1902—1994)
661