Курчатовский институт столяревский анатолий яковлевич хемотермические технологии аккумулирования энергии ядерных энергоисточников

Вид материалаАвтореферат

Содержание


В разделе 4.1
В разделе 4.2
В разделе 4.3
Подобный материал:
1   2   3   4   5
Главе 4 представлены результаты исследования и разработки сорбционных систем утилизации низкопотенциального тепла.

В разделе 4.1 рассмотрены низкотемпературные циклы накопления энергии. Автором предложены и разработаны технологии и технические средства электро- и теплогенерации в модульном исполнении на основе высокоэффективных аккумулирующих углекислотных циклов высокого давления с сорбционным накоплением рабочего тела (САУ – сорбционных аккумулирующих установок), утилизирующих сбросное тепло основной энергоустановки., основанные на синтезе технологических решений, отработанных для проектов теплонасосных установок (ТНУ), геотермальных электростанций (ГТЭС) и углекислотных турбоблоков.

Следует отметить, что в отличие от зарубежной практики, в последнее десятилетие накопители ни одного из рассмотренных типов в России не только не строятся, но и не проектируются. Отсутствие проектного и строительного задела приведет к значительным проблемам в ближайшем будущем, для смягчения которых необходимо форсировать работы по этому направлению энергетического строительства.

Разработанная энергоустановка САУ с высокоэффективным аккумулирующим углекислотным циклом высокого давления с сорбционным накоплением рабочего тела, утилизирующим сбросное тепло основной энергоустановки основана на концепции хемотермических системы (ХТС) накопления и передачи энергии, непосредственно сопрягаемых с теплоисточниками различного типа по теплоносителю умеренной температуры. Рассмотрены различные инженерные решения для САУ с целью обеспечения профилированного профиля температур теплоносителя, проходящего через слой свободной засыпки сорбента аккумулятора рабочего тела (АРТ).

Электростанцию (ЭС), включающую САУ предполагается разместить на площадках, допускающих расширение, соизмеримое по площади с основной ЭС, в том числе с максимально уплотненной петлевой компоновкой оборудования, при этом использовать отработанные конструктивные решения для углекислотных систем, турбоустановки и АРТ. Принципиальная схема САУ – двухконтурная, с использованием во втором контуре углекислотным циклом высокого давления с сорбционным накоплением рабочего тела для обеспечения высоких значений КПД накопления энергии.

Основные требования, предъявляемые к САУ: повышение мощности ЭУ за счёт углекислотной турбины и общей вырабатываемой пиковой энергии; требуемый расход тепловой энергии, подводимой в пиковом режиме от стороннего энергоисточника, не должен превышать 20-30% от тепла, подводимого к рабочему телу от стороннего источника в рассматриваемом техническом решении; повышенная надежность работы установки и снижение стоимости производства энергии за счет резкого (на несколько порядков) снижения подпитки рабочего тела в установку, подаваемого со стороны, исключение зависимости от подвозки рабочего тела на площадку размещения установки; обеспечение полной экологическая безопасность энергоаккумулирующей установки поскольку рабочее тело не выбрасывается в окружающую среду; запасение с помощью тепловых аккумуляторов установки любого требуемого количества энергии, достаточного для обеспечения стабильной бесперебойной работы установки даже в периоды перерыва в подводе тепловой энергии от стороннего источника; обеспечение возможности применения данной установки для выработки пиковой электроэнергии и одновременного снабжения различных объектов тепловой энергией и холодом в режиме разуплотненного графика их потребления; обеспечение возможности аккумулирования провальной ночной энергии, отпускаемой по сниженному тарифу; обеспечение возможности эффективной утилизации сбросного тепла различных тепловых двигателей, а также расширение возможности применения возобновляемых природных источников энергии, обладающих значительным ресурсным потенциалом и, в то же время, высокой неравномерностью поступления их энергии, а также дополнительного повышения эффективности установки в холодные климатические периоды; повышение надежности работы и снижение стоимости изготовления установки за счет умеренных по температуре и давлению параметров рабочего тела; возможность использования уже существующих материалов, технических решений и оборудования, необходимых для её создания; капитальные затраты на сооружение блока с САУ должны быть не выше удельных капитальных затрат, характерных для основного энергоблока.

Концепция САУ является принципиально новой, однако основывается на в значительной степени уже отработанных в России и в мире технологиях углекислотных циклов высокого давления, а также сорбционных систем хранения газа.

В разделе 4.2 представлены результаты разработки водоаммиачных регуляторов мощности. Показано, что наибольшая маневренность АЭС при использовании водо-аммиачных систем может быть достигнута при создании водоаммиачных регуляторов мощности (ВАРМ), в которых вся запасенная в период провала нагрузки тепловая энергия срабатывает­ся в периоды увеличения нагрузки АЭС в сателлитной аммиачной тур­бине.

Как показали проектные проработки ВАРМ, выполненные приме­нительно к одному из блоков Ленинградской АЭС (ЛАЭС), возможно частичное совмеще­ние функций абсорбера и генератора в одном конструктивном узле, что сокращает потребное количество колонн и снижает затраты на металл.

Хранение реагентов - аммиака и слабого водоаммиачного рас­твора - осуществляется при близких к нормальным температуре и дав­лении и базируется на отработанной технологии создания и эксплуа­тации сферических емкостей большого объема, в том числе с жидким аммиаком.

Чтобы использовать аммиак после турбины в абсорбе­ре без дополнительных потерь, давление в абсорбере было выбрано 0,2 МПа, однако относительно низкое давление снижает максимальную температуру абсорбции и это не позволяет перегреть аммиак до нужной температуры. В этой связи в схему включён пароперегреватель, перегрев аммиака в котором проводится острым паром турбины, что, как показали прове­денные исследования, не является экономически целесообразным. С этой точки зрения более привлекательны турбины, имеющие высо­кое разделительное давление перед цилиндром низкого давления, что позволит отбирать пар, имеющий меньшую эксергетическую ценность и, следовательно, повы­сить общую эффективность аккумулирования. К таким турбинам для АЭС с ВВЭР относится K-1000-60/1500 (ПОАТ ХТЗ) с разделительным давлением 10.5 ата, а также ее аналог K-1000-60/1500-2, в которой на один недоотпущенный кВт.ч электроэнергии при отборе пара перед цилиндром низкого давления (ЦНД ) запаса­ется около 4 кВт.ч тепловой энергии, подаваемой в десорбер. Для увеличения глубины разгрузки желательно переключение всего расхода пара, идущего на ЦНД (оставив лишь вентиляционный расход), для подогрева воды промежуточного контура, пе­редающего тепло к теплоприемникам (десорберам) установки ВАРМ.

На рис.8 изображена схема накопителя и пикового контура АЭС, в котором перегрев аммиака проводится в дополнительном водо-аммиачном кон­туре, давление в абсорбере которого 1,9 МПа, что позволяет перегреть аммиак до 160°С (а не до 85°С, как в более ранних разработках). В конце 80-х годов ХХ века в соответствии с заданием Минатомэнергопрома СССР по схеме и технологии предложенной автором проведены технико-экономические исследования по ис­пользованию ВАРМ применительно к блоку РБМК-1000 (ЛАЭС).

Основные проектные проработки были нацелены на многовариантные технические решения по теплотехнологическому обо­рудованию ВАРМ.

Таблица 5.Термодинамические характеристики растворов (см. рис.8)

Номера точек

Давление МПа

Температура °С

Концентрация

кг NH3/кг

Энтальпия ккал/кг

Расход,

кг/кг раствора

I

2

3

4

5

6

1

1,0

20

0,433

-34,2

1,0

1

2

3

4

5

6

1’

1,0

73.3

0,438

19,2

1,00

2

1,0

170

0,030

167

0,57

3

19,10

172

0,03

-7,4

0,57

3’

19,10

105

0,41

57,2

0,95

4

19.10

25

0,438

-59,6

1

5

1,0

57,4

0,990

332

0.43

5’

1,0

73.3

0,438

346

0,44

6

1,0

25

1,0

25,8

0, 43

8

19,1

47,4

1,0

309

0,43

9

1.0

73

0,438

19,2

0,01


Разработаны конструкции основного оборудова­ния (генератор - адсорбер, ректификационные колонны, сепараторы, теплообменники, пароперегреватель и т.д.), сделан выбор стандартного оборудования (насосы и т.д.) и проведен сметный расчет.

Несколько больший опыт имеется в стране по разработке тур­бин, работающих на углекислом газе, что заставило рассмот­реть вариант ВАРМ-CO2, в котором в качестве испаряемого компонента и рабочего тела турбины служит не аммиак, а углекислота. В этом варианте в качестве абсорбента используют 20-30% водный раствор аммиака либо твёрдые сорбенты (цеолиты или активированные угли). Хранение и транспорт жидкой углекислоты хорошо освое­ны в промышленности.

Следует отметить, что в связи с низкой теплотой испа­рения СО2 и высокой теплотой поглощения СО2 в аммиачном растворе в режиме разрядки возникает необходимость утилизации избы­точного тепла абсорбции (около 800-900 кДж/кг СО2 ). Один из вари­антов - отвод этого тепла на нагрев питательной воды в основной турбине (К-600-6,9/50 или КТ-600-6,9/25) при отключении подогревателей низкого давления, увеличении пропуска на выхлоп и соответствующем увеличении мощности на клеммах генератора. По данным заводов, определенный ре­зерв (до 50%) по пропуску пара в ЦНД имеется.

В этом случае, как и варианте ВАРМ, к.п.д. аккумуляции составит до 80-85%, что даст дополнительную мощность на "пиковой" турбине до 120-150 МВт(эл.) в рас­чете на один блок при снижении ночной нагрузки блока на 8 ч и работе "пиковой" турбины днем в течение 8-10 ч или 250-300 МВт при работе на пиковой мощности в течение 5 ч при зарядке ночью в течение 10-12 ч.

Проработка BAРM-CO2 велась для схемы, приведенной на рис. 9.

На 1 кг СО2 одновременно в генераторе отгоняются 0,386 кг NH3 и по равновесию с крепким раствором (yNH3 =0,32,yco2 =0,63) определяется количество флегмы (2,4 кг/кг), что в конечном счете дает расчетное значение тепловой нагрузки генератора (около 10000 кДж/кг NH3 или 3860 кДж/кг С02).

При этом в расчете на 1 кг СО2 при степени карбонизации К=200% полная теплота абсорбции при 40°С составляет 1350 кДж/кт CО2, что и определяет тепло­вой режим разрядки.

В разрядке тепло абсорбции СО2 в рас­творе аммиака расходуется на испарение и перегрев СО2 перед турбиной 14 и на нагрев воды промежуточного контура, переда­ющего тепло в тракт нагрева питательной воды III (в теплообменник ППВ, см. рис.9).

Рассчитан процесс 4-ступенчато­го близкого к адиабатическому сжатия СО2 со ступенями 0,2; 0,4; 0,6; 0,8 и 1,0 МПа. Соответствующая сумма работ по ступеням равна 140 кДж, тепло отведенное суммарное - 153 кДж (в расчете на 1 кг СО2). Следовательно, для ВАРМ-СО2 с параметрами по табл.5 1ож* = 208-141=67 кДж/кг q=363-153=210 кДж/кг.

Отношение вырабатываемой при разрядке энергии к запасенной (затраченной) при зарядке составит таким образом (31,5+40)/(120+20,2)=0,51, что соответствует характерным значениям альтернативных вариантов энергоаккумуляторов. Важно отметить, что при фиксированных удельных затратах (ценах) прирост к.п.д. должен опережать соответствующий рост капитальных вложений в энергоаккумулятор. Это один из основных критериев при сопоставлении вариантов.

В качестве сорбента СО2 могут использоваться не только водоаммиачные растворы, но и твердые углеродные и цеолитовые сорбенты (рис. 10).

На основании результатов проектирования углекислотных энергоустановок (ПОАТ ХТЗ, КиевТЭП, ОПИ, ЛФ Оргэнергострой и др.) было показано, что при переходе от больших (500 МВт) к малым (50 МВт) единичным мощностям технико-экономические показатели углекислотных турбин меняются не так резко, как пароводяных установках. Проектная турбина низкого давления установки УКЭУ-50 имеет мощность 44 МВт при к.п.д. 89,5%. Начальное давление турбины низкого давления - 5,76 МПа.

В расчете на дополнительную мощность, вырабатываемую АЭС в режиме разрядки САУ-CO2 (71,5 МВт), удельные капиталовложения в уста­новку составят около 73 дол/кВт. Эта цифра лежит существенно ниже соответствующих показателей альтерна­тивных систем энергоаккумулирования и может рассматриваться как от­вечающая требованиям по конкурентоспособности установки со значитель­ным запасом по эффективности.

В разделе 4.3 даны результаты выбора эффективных циклов сорбционного накопления рабочего тела на основе выполненных схемно-конструктивных разработок энергоустановок с высокоэффективным аккумулирующим углекислотным циклом высокого давления.

Выполнена разработка решений для одного из возможных вариантов исполнения энергоустановке с высокоэффективным аккумулирующим углекислотным циклом для ЭС, конкурентоспособной по безопасности, экономичности и другим параметрам по отношению к альтернативным энергоисточникам, в том числе к перспективным теплоаккумуляторам и электростанциям на органическом топливе.

Основные концептуальные решения рассматриваемого варианта САУ состоят в следующем: а) рабочее тело – диоксид углерода (СО2, R744) высокого давления (4 МПа) с температурой на входе в турбину до 200 оС; б) схема установки двухконтурная, с использованием во втором контуре углекислотного цикла высокого давления с сорбционным накоплением рабочего тела для обеспечения высоких значений КПД накопления энергии; в)  компоновка основного оборудования петлевая; г) аккумулятор рабочего тела выполнен в ёмкости большого объёма с размещенными внутри теплообменными поверхностями на основе заполнения сорбентом в виде свободной засыпки с поперечно-осевым течением рабочего тела; д) теплообменники перегрева СО2 размещаются в аппаратах, пристыкованных к источнику утилизируемого тепла; е) парогенераторы СО2 – секционные микроканального сотового типа прямоточного типа с генерацией пара в межпластинчатом пространстве (направление движения рабочего тела снизу вверх).

Энергоустановка САУ использует в качестве источника тепловой энергии сбросное тепло основного энергоисточника, в качестве которого могут быть использованы энергокомплекс с плавучей АЭС (ПАТЭС), установки с возобновляемыми источниками энергии, а также работает в сочетании с газотурбинными (ГТУ) установками или энергоустановками на основе двигателей внутреннего сгорания (ДВС).

Использование в качестве рабочего тела диоксида углерода (СО2, R744) высокого давления (4 МПа), имеющего ряд специфических свойств, создает ряд преимуществ: СО2 не ядовит, не испытывает при работе САУ химических превращений, не диссоциирует, не является пожаро- взрывоопасным, имеет хорошие теплопередающие свойства, не разрушает озоновый слой, имеет самый низкий среди применяемых рабочих веществ потенциал глобального потепления. СО2 в рабочем диапазоне температур и давлений химически инертен, отсутствуют химические реакции с конструкционными материалами.

Локализация рабочего тела при авариях с разгерметизацией рабочего контура и защита САУ от внешних воздействий не требуются. Даже в случае полной потери СО2 отсутствует необходимость в эвакуации населения, проживающего в районе расположения станции.

Показано, что использование вышеназванных технологий позволяет: увеличить КПД аккумулирования энергии, что определяет резкое снижение тепловых сбросов в окружающую среду на единицу произведенной энергии и улучшает технико-экономические показатели; обеспечить высокий уровень безопасности, исключающий ограничение на размещение САУ вблизи крупных населённых пунктов; продемонстрировать конкурентоспособность энергоустановки с САУ на мировом рынке коммерческого производства электроэнергии с более низкой стоимостью производимой электроэнергии по отношению к альтернативным энергоисточникам (электростанциям на органическом топливе, в том числе и к перспективным, использующим комбинированный парогазовый цикл).

Основные технические характеристики реакторной установки САУ приведены в таблице 6.

Таблица 6. Основные технические характеристики энергетической установки САУ (в варианте применительно к одной РУ КЛТ-40 на ПАТЭС)

Наименование

Значение

1. Тип турбины

Углекислотная с противодавлением

2. Схема преобразования энергии

Двухконтурная с выработкой газообразного СО2 высокого давления и низких температурных параметров

3. Электрическая мощность установки, максимальная, МВт

26

4. Тепловая мощность, подводимая от РУ, МВт:

в пиковом режиме

в режиме ночного снижения

30

15

5.  контур подвода тепла




5.1. Теплоноситель первого контура

вода

5.2. Давление контура, МПа

5.3

5.3. Температура пара первого контура на входе

285

5.4. Потери давления, МПа, не более

0,5

5. Углекислотный контур




5.2. Рабочее тело

СО2 высокого давления

5.3. Мощность турбины (детандера), МВт

26

5.3. Давление перегретого СО2 за ПГ, МПа

4.0

5.4. Температура перегретого СО2 за ПГ, С

180

5.5. Температура СО2 на выходе из ХРТ, С

-0.4

5.6. Давление СО2 на входе в АРТ, МПа

0.2

5.7. Температура СО2 на входе / выходе компрессора , С

20/111

6. Базовый режим работы

100%Nном

7. Назначенный срок службы, лет

60

8. Средний за срок службы КИМ, не менее

0,87

Основные выводы
  1. Проведено комплексное системное исследование различных технологий производства водорода, получены оценки их эффективности в приложении к ядерным энергоисточникам, определены ограничения по применимости термохимических циклов разложения воды, в том числе впервые показана практическая неэффективность применения серно-иодного цикла в ядерно-технологическом комплексе производства водорода;
  2. Применительно к реакторной установке МГР-Т мощностью 600 МВт (тепл) определены технологические решения, схема и параметры процесса производства водорода из воды и природного газа.
  3. Проведено комплексное исследование требований и возможностей систем аккумулирования энергии, обеспечивающих увеличение доли АЭС в энергосистемах, показана необходимость создания накопителей энергии с низкими удельными капитальными затратами, суммарная мощность которых для сбалансированности работы энергосистем должна составлять 10-15 % суммарной установленной мощности АЭС и ТЭС.
  4. Разработана схема и определены основные технические решения по маневренной АЭС с ВТГР на основе применения бинарного парогазового цикла с хемотермическим аккумулированием, позволяющего не только получить высокую тепловую экономичность, но и обеспечить процесс конверсии метана технологическим паром, утилизировать теплоту охлаждения смеси Н2 и СО и рационально использовать аккумулированную те­плоту. Определены параметры и конструктивные характеристики газовой и паровой турбин.
  5. Показано, что разработанная схема АЭУ позволяет при постоянной мощности реактора в 1000 МВт (тепл) изменять нагрузку блока в диапазоне от 240 до 560 МВт со среднесуточным КПД около 42%.
  6. Применительно к задачам теплофикации предложена схема АТЭЦ на базе ГТУ с ВТГР, исследования которой определили схемы, параметры и спо­собы компоновки оборудования.
  7. Применительно к схеме атомных станций дальнего теплоснабжения с хемотермической передачей тепла определены основные технические решения, схемы и технологические параметры по контуру конверсии метана.
  8. Применительно к разработанной схеме передачи тепла для установки МГР-Т мощностью 600 МВт (тепл) выявлены факторы радиационной и пожаровзрывобезопасности, найдены и рекомендованы технологические решения по их обеспечению применительно к атомно-водородному комплексу производительностью более 400 тыс. т водорода/год..
  9. В результате комплексных исследований найден и рекомендован для практического применения диапазон рабочих параметров сорбционной аккумулирующей установки, обеспечивающих наибольший эффект в режиме аккумулирования низкопотенциального тепла ЯЭИ.


Основное содержание диссертации отражено в следующих рецензируемых публикациях:
  1. Столяревский А.Я. Аккумулирование вторичной энергии.- В сб. Атомно-водородная энергетика и технология.- - М.:Энергоатомиздат,1980.вып.4, С.60-126.
  2. Столяревский А.Я. Ядерно-технологические комплексы на основе высокотемпературных реакторов. / Монография. - М.:Энергоатомиздат,1988, (С.150, 9.3 п.л.).
  3. Столяревский А.Я., Хемотермические циклы и установки аккумулирования энергии. // International Scientific Journal for Alternative Energy and Ecology, IJAEE. -2005.№3(23). С.33-46.
  4. A.Stolyarevskiy, Concept and Status of Efforts to Create Nuclear Hydrogen in Russia. Report to ANS Embedded Topical on “Safety and Technology of Nuclear Hydrogen Production, Control and Management” (ST-NH2). Boston, MA, June 26, 2007
  5. A. Stolyarevskiy, The effective technology of hydrogen production in the transition, Report on II International Forum «Hydrogen technologies for the developing world » held in conjunction with 9th meeting of the Steering Committee of the IPHE. April 22-23, 2008. Moscow, «President Hotel»
  6. A. Stolyarevskiy, Novel technology for syn-gas and alternative fuel production, GAFF-2005
  7. A. Stolyarevskiy, Innovative natural gas reforming for hydrogen production, Report to Intnl. Forum “Hydrogen technologies for energy production”, Moscow, 6-10 Febr. 2006.
  8. Столяревский А.Я., Технология получения синтез-газа для водородной энергетики// International Scientific Journal for Alternative Energy and Ecology, ISJAEE .-2005.2(22). С.26-32
  9. Столяревский А.Я., Бескислородное производство синтез-газа и альтернативных моторных топлив на его основе с использованием адиабатической конверсии природного газа. В сб. тезисов докл. Межд. Конф. «Альтернативные источники энергии для транспорта и энергетики больших городов», М.,2005:Изд-во Прима-Пресс, С.81-83.
  10. Столяревский А.Я. Технология производства водородо-метановой смеси для автотранспорта.//Наука и техника в газовой промышленности.№3,2008, С.73-80.
  11. Столяревский А.Я. Производство альтернативного топлива на основе ядерных энергоисточников.//Российский химический журнал.№ 6,2008, т.LII. УДК 661.961:621.039.576.
  12. Пономарев-Степной Н.Н., Столяревский А.Я., Пахомов В.П.. Атомно-водородная энергетика. Системные аспекты и ключевые проблемы. /Монография.-М.:Энергоатомиздат, 2008. С.108 (вклад автора -4 п.л.)
  13. Патент – 2273742 РФ, МПК6 F 01K25/06. Энергоаккумулирующая установка / А.Я.Столяревский; Центр КОРТЭС.- N 2004126596/06; Заяв. 2004.09.03; Опубл. 2006.04.10, Бюл. N 10.
  14. Патент – 2274600 РФ, МПК6 С 01В3/38. Способ многостадийного получения синтетического газа / А.Я.Столяревский; Центр КОРТЭС.- N 2004126507/15; Заяв. 2004.09.03; Опубл. 2006.04.20, Бюл. N 11.
  15. А. с. 685042 СССР, МПК6 G21D3/12. Ядерная энергетическая установка/ А.Я.Столяревский;- N 2489246; Заяв. 1977.05.24; зарегистр. 1979.05.14, Госреестр изобретений.
  16. Патент - 2214634 РФ, МПК6 G21C9/06. Система послеаварийной инертизации/ А.Я.Столяревский; Центр КОРТЭС.- N 2001122034/06; Заяв. 2001.08.08; Опубл. 2003.10.20, Бюл. N 22.
  17. Патент - 2214633 РФ, МПК6 G21C1/03. ТЕПЛОВЫДЕЛЯЮЩАЯ СБОРКА, АКТИВНАЯ ЗОНА И СПОСОБ ЭКСПЛУАТАЦИИ ВОДО-ВОДЯНОГО ЭНЕРГЕТИЧЕСКОГО РЕАКТОРА / А.Я.Столяревский; Центр КОРТЭС.- N 2001122033/06; Заяв. 2001.08.08; Опубл. 2003.04.20, Бюл. N 6.
  18. Патент - 2183310 РФ, МПК6 F28D15/02. Устройство термостабилизации/ А.Я.Столяревский; Центр КОРТЭС.- N 2000127255/06; Заяв. 2000.10.31; Опубл. 2002.06.10, Бюл. N 10.
  19. Патент - 2173661 РФ, МПК6 B65D83/14. КАПСУЛА ДЛЯ ХРАНЕНИЯ ГАЗА И УСТРОЙСТВО ЗАПРАВКИ ГАЗОНАПОЛНЯЕМЫХ ИЗДЕЛИЙ / А.Я.Столяревский; Центр КОРТЭС.- N 99124236/13; Заяв. 1999.11.12; Опубл. 2001.09.20, Бюл. N 16.
  20. Патент - 2171765 РФ, МПК6 B65D83/14. КАПСУЛА ДЛЯ ХРАНЕНИЯ ГАЗА И СПОСОБ ЕЕ ЗАПРАВКИ / А.Я.Столяревский; Центр КОРТЭС.- N 2000104684/13; Заяв. 2000.02.29; Опубл. 2001.08.10, Бюл. N 14.
  21. Патент – 2171214 РФ, МПК6 B65D83/14. КАПСУЛА ДЛЯ ХРАНЕНИЯ ГАЗА И СПОСОБ ЕЕ ЗАПРАВКИ / А.Я.Столяревский; Центр КОРТЭС.- N 99124241/13; Заяв. 1999.11.12; Опубл. 2001.07.27, Бюл. N 12.
  22. Патент - 2157780 РФ, МПК6 B65D83/14. КАПСУЛА ДЛЯ ХРАНЕНИЯ ГАЗА И СПОСОБ ЕЕ ЗАПРАВКИ / А.Я.Столяревский; Центр КОРТЭС.- N 99112244/13; Заяв. 1999.06.03; Опубл. 2000.10.20, Бюл. N 14.
  23. Патент - 2157780 РФ, МПК6 F16K15/14. ПЕРЕПУСКНОЕ КЛАПАННОЕ УСТРОЙСТВО / А.Я.Столяревский; Центр КОРТЭС.- N 94030503/06; Заяв. 1994.08.10; Опубл. 1998.02.20, Бюл. N 2.
  24. Патент - 2157780 РФ, МПК6 B65D83/14. КАПСУЛА ДЛЯ ХРАНЕНИЯ ГАЗА И СПОСОБ ЕЕ ЗАПРАВКИ / А.Я.Столяревский; Центр КОРТЭС.- N 99112244/13; Заяв. 1999.06.03; Опубл. 2000.10.20, Бюл. N 14.
  25. Патент – 6770118 США, B65D83/14. GAS STORAGE CAPSULE AND METHOD FOR FILLING SAID CAPSULE / Anatoly Stolyarevsy; Center CORTES.- N 10/064924; Заяв. 2002.08.29 ; Опубл. 2004.08.03, USPTO.
  26. Столяревский А.Я., Аваков В.Б., Касаткин М.А.,.Хуснутдинов В.А. Регулирующая энергетическая установка для систем промышленного и коммунального электроснабжения на базе электрохимического генератора с замкнутым водородным циклом.//Электросистемы.№4,2007,С.24-28.
  27. Столяревский А.Я., Энергоаккумулирующая установка. // Изобретатели -машиностроению. - 2008.№2(47).-С.48-51.
  28. Столяревский А.Я., Верхивкер Г.П., Кравченко В.П. и др. О схемах хемотермической части АЭТС с высокотемпературными реакторами // Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.3, М., 1985, с. 22-24.
  29. Столяревский А.Я., Хуснутдинов В.А., Касаткин М.А., Регулирующие энергетические установки на базе электрохимических генераторов и формирование территориальной водородной инфраструктуры. // International Scientific Journal for Alternative Energy and Ecology, ISJAEE, №4, 2007, С.110-118.
  30. Столяревский А.Я., Чабак А.Ф., Прохоров, А.Ф.,Николаевский В.Б. Исследования водородной проницаемости материалов термоконверсионных агрегатов // Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.3, М., 1980, с. 42-44.
  31. Столяревский А.Я., Федотов И.Л., Сявриков А.Я. Анализ возможностей создания термоконверсионного агрегата с вынесенным реакционным объемом // Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.1(8), М., 1981, с. 10-11.
  32. Столяревский А.Я., Костин В.И., Кодочигов Н.Г., Васяев А.В., Кузнецов Л.Е., Пономарев-Степной Н.Н., Кухаркин Н.Е. МГР-Т – инновационная ядерная технология для комбинированного производства водорода и электроэнергии. Доклад на Второй Российской научно - технической конференции "Материалы ядерной техники" (МАЯТ-2) : Рос. конф, 19-23 сент. 2005 г., Агой (Краснодар. край). : Тез. докл.. -М.: РИО ВНИИНМ, 2005.
  33. Столяревский А.Я., Проценко А.Н., Маргулис У.Я., Хрулёв А.А. и др. Оценка возможного радиационного воздействия при использовании водорода, получаемого на АЭТУ с ВТГР // Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.1(5), М., 1979, с. 80-85.
  34. Столяревский А.Я., Пономарев-Степной Н.Н., Проценко А.Н., Кирюшин А.И. Особенности обеспечения безопасности опытно-промышленной атомной энергетической установки ВГ-400// Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.2, М., 1988, с. 20-38.
  35. Столяревский А.Я., Бескислородное производство синтез-газа и альтернативных моторных топлив на его основе с использованием адиабатической конверсии природного газа. В сб. тезисов докл. Межд. Конф. «Альтернативные источники энергии для транспорта и энергетики больших городов», М.,2005: Изд-во Прима-Пресс, С.81-83.
  36. СтоляревскийА.Я., Кузьмин И.И. Перспективы ядерной энергетики // Энергия: Экономика, техника, экология.- 1985.№4,С.44-51.
  37. Столяревский А.Я., Михайлова С.А., Брун-Цеховой А.Р., Кацобашвили Я.Р. и др. Об одном из перспективных направлений совершенствования процесса паровой конверсии углеводородов // Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.2(9), М., 1981, с. 96-98.
  38. Столяревский А.Я., Хуснутдинов В.А., Инновационные технологии атомно-водородной энергетики в проекте «Бакчарская сталь», International Scientific Journal for Alternative Energy and Ecology, ISJAEE, №11(55), 2007.рр.114-123.
  39. Столяревский А.Я., Михайлова С.А., Дорошенко Н.А., Проценко А.Н., Алексеев А.М. Возможные пути использования тепловой энергии высокотемпературного газоохлаждаемого реактора ВГ-400 для производства аммиака// Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.2(7), М., 1980, с. 21-24.
  40. Столяревский А.Я., Верхивкер Г.П., Кравченко В.П. и др. О схемах хемотермической части АЭТС с высокотемпературными реакторами // Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.3, М., 1985, с. 22-24.
  41. Столяревский А.Я., Митенков Ф.М., Кодочигов Н.Г., Васяев А.В., Головко Г.Ф., Кузнецов Л.Е., Пономарев-Степной Н.Н., Кухаркин Н.Е. Возможность промышленного внедрения РУ с ВТГР для промышленного производства водорода. //Тяжелое машиностроение.- 2007.№3, С.24-28.
  42. Столяревский А.Я., Мелентьев Л.А., Пономарев-Степной Н.Н., Назаров Э.К., Перспективы создания хемотермических систем теплоснабжения на базе высокотемпературных ядерных реакторов.- В сб. Атомно-водородная энергетика и технология.- М.:Энергоатомиздат,1983,вып.5,С.44-71.
  43. Столяревский А.Я., Пономарев-Степной Н.Н., Проценко А.Н., Гребенник В.Н. Перспективы комплексного использования энергии ядерных реакторов в черной металлургии// Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.1, М., 1976, С. 115-134.
  44. Столяревский А.Я., Пахомов В.П., Волощенко Г.П., Мележко Е.В., Атомно-водородная энергетика - энергетика будущего// Бюлл. по атомной энергии. 2003.№5.С.23-32.
  45. Столяревский А.Я., Михайлова С.А., Галактионов И.В., Черняев В.А. и др. Вопросы эффективного дальнего теплоснабжения с помощью хемотермических систем // Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.1(8), М., 1981, с. 44-47.