Книга канадского автора учебник общей психологин с основами физиологии высшей нервной деятельности. Том 2 посвящен проблемам социальной психологии (становление личности,
Вид материала | Книга |
- Книга канадского автора-учебник общей психологии с основами физиологии высшей нервной, 6317.37kb.
- Книга канадского автора-учебник общей психологии с основами физиологии высшей нервной, 5807.81kb.
- Книга канадского автора. Учебник общей психологии с основами физиологии высшей нервной, 8180.96kb.
- 1. Изучение поведения история и методы 13 Глава 1 Что такое поведение, 7795.15kb.
- Программа курса "физиология сенсорных систем и высшей нервной деятельности, 125.53kb.
- 1. Логика как наука Логика наука о мышлении. Но в отличие от других наук, изучающих, 990.11kb.
- Пояснительная записка Требования к студентам, 114.14kb.
- Задачи дисциплины : Выяснить нейрофизиологические механизмы условно-рефлекторной деятельности, 131.13kb.
- Учебно-методический комплекс по дисциплине «физиология центральной нервной системы», 1510.33kb.
- Глутаматергическая и дофаминергическая регуляция активности no-ергической системы прилежащего, 284.32kb.
был весьма поверхностным, и главная задача его заключалась в том, чтобы читатель тюнял, что статистика не так страшна, как кажется, и требует в основном здравого смысла. Напоминаем, что данные «опыта», с которыми мы здесь имели дело,-вымышленные и не могут служить основанием для каких-либо выводов. Впрочем, подобный эксперимент стоило бы действительно провести. Поскольку для этого опыта была выбрана сугубо классическая методика, такой же статистический анализ можно было бы использовать во множестве различных экспериментов. В любом случае нам кажется* что мы наметили какие-то главные направления, которые могут оказаться полезны тем, кто не знает, с чего начать статистический анализ полученных результатов.
Резюме
Существуют три главных раздела статистики: описательная статистика, индуктивная статистика и корреляционный анализ,
I. Описательная статистика
1. Задачи описательной статистики - классификация данных, построение распределения их частот, выявление центральных тенденций этого распределения и оценка разброса данных относительно средних.
2. Для классификации данных сначала располагают их в возрастающем порядке. Далее их разбивают на классы по величине, интервалы между которыми определяются в зависимости от того, что именно иследователь хочет выявить в данном распределении,
3. К наиболее часто используемым параметрам, с помощью которых можно описать распределение, относятся, с одной стороны, такие величины, как мода, медиана и средняя арифметическая, а с другой-показатели, разброса, такие как варианса (дисперсия) и стандартное отклонение,
4. Мода соответствует значению, которое встречается чаще других или находится в середине класса,' обладающего наибольшей частотой.
Медиана соответствует значению центрального данного, которое может быть получено после того, как все данные будут расположены в возрастающем порядке.
Средняя арифметическая равна частному от деления суммы всех данных на их число.
Распределение считается нормальным, если кривая распределения имеет ко л околообразный вид, а все показатели центральной тенденции совпадают, что свидетельствует о симметричности распределения,
5. Диапазон распределения (размах вариаций) равен разности между наибольшим и наименьшим значениями результатов,
6. Среднее отклонение -это более точный показатель разброса, чем диапазон распределения. Для расчета среднего отклонения вычисляют среднюю разность между всеми значениями данных и средней арифме-
Статистики и оорапатка дачны
тической, или, упрощенно»
Среднее отклонение =
7, Еще один показатель разброса, вычисляемый из среднего отклонения,-это варианса (дисперсия), равная среднему квадрату разностей между значениями всех данных и средней:
Варианса -
8. Наиболее употребительным показателем разброса служит стан-дартное отклонение, равное квадратному корню из вариансы» Таким образом, это квадратный корень из суммы квадратов всех отклонений от средней:
Стандартное отклонение =
V и V п —
9+ Важное свойство стандартного отклонения заключаете в том, что независимо от его абсолютной величины в нормальном распределении оно всегда соответствует одинаковому проценту данных, располагающихся по обе стороны от средней: 68% результатов располагаются в пределах одного стандартного отклонения в обе стороны от средней, 95% - в пределах двух стандартных отклонений и 99,7%-в пределах трех стандартных отклонений.
10. С помощью перечисленных выше показателей можно осуществить оценку различий между двумя или несколькими распределениями, позволяющую проверить, насколько эти различия могут быть экстраполированы на популяцию, из которой взяты выборки. Для этого применяют методы индуктивной статистики.
-
IL Индуктивная статистика
1. Задача индуктивной статистики заключается в том, чтобы оценить значимость тех различий, которые могут быть между двумя распределениями, с целью выяснить, можно ли распространить найденную закономерность на всю популяцию, из которой были взяты выборки.
2. Для того чтобы определить, достоверны ли различия между распределениями, следует выдвинуть гипотезу, которую нужно будет затем проверить статистическими методами. Нулевой гипотезой называют предположение, согласно которому различие между распределениями недостоверно, тогда как альтернативная гипотеза утверждает противоположное.
3. В том случае, если данных достаточно, если эти данные количественные и подчиняются нормальному распределению, для проверки гипотез используют параметрические критерии. Если же данных мало либо они
314 При.ш.жетн' К
являются порядковыми или качественными (см.дополнение Б.1), используют непараметрические критерии.
4. Из параметрических критериев наиболее эффективен и чаще всего используется критерий"! Стьюдента. Этот критерий позволяет сравнить средние и стандартные отклонения для двух распределений. В случае если эти показатели принадлежат независимым выборкам, используют формулу
Для сопряженных выборок используют иную формулу:
5, Если необходимо сравнить три или большее число распределений, используют иной параметрический метод - дисперсионный анализ. При этом с помощью метода Шеффе можно выявить пары выборок, различия между которыми достоверны либо недостоверны.
6. Критерий х2 (хи-квадрат) - это непараметрический критерий, позволяющий проверить, являются ли две переменные независимыми друг от друга, .По этому методу сравнивают, как распределяются эмпирические частоты в зависимости от критериев для каждой переменной, с тем, как они распределились бы теоретически, если бы переменные были независимыми. Далее с помощью таблицы, в которую сводятся все частоты, вычисляют критерий х2. Для этого сначала находят разницу между каждой эмпирической (Э) и соответствующей теоретической (Т) частотой, а затем сумму этих разностей:
7. Критерий знаков (биномиальный тест)-еще один непараметрический метод, позволяющий легко определить, оказала ли независимая переменная существенное влияние по сравнению с исходным уровнем (фоном). Для этого сначала подсчитывают число «ухудшений» (-) или число «улучшений» (+), а затем сравнивают одно из этих двух чисел с тем, что могло бы получиться в результате чистой случайности (1 шанс из 2, или л/2). Для этого применяют формулу
(Х±0.5)~
и обработки <Штых 315
8, Существуют и другие непараметрические тесты, которые приходится использовать для проверки гипотез тогда, когда нельзя применить параметрические критерии, К этим методам, в частности, относится критерий рангов позволяющий определить, случайна или нет очередность событий в той или иной последовательности, а также критерий V и критерии 7\ Последние лва критерия используют в случае порядковых переменных соответственно для независимых и зависимых выборок.
9. Какой бы критерий ни использовался, его вычисленное значение следует сравнить с табличным для уровня значимости 0,05 с учетом числа степеней свободы. Если при этом вычисленный „результат окажется выше, нулевая гипотеза может быть отвергнута и можно, следовательно, утверждать* что разница достоверна,
III. Корреляционный анализ
1. Задача корреляционного анализа заключается в том, чтобы установить возможную связь между двумя показателями, полученными на одной и той же или на двух различных выборках. При этом устанавливается, приводит ли увеличение какого-либо показателя к увеличению или уменьшению другого показателя.
2. Коэффициент корреляции колеблется в пределах от -И, что соответствует полной положительной корреляции, до — 1 в случае полной отрицательной корреляции. Если этот коэффициент равен 0, то никакой корреляции между двумя рядами данных нет.
3. Коэффициент корреляции Браве - Пирсона (г)-э?о параметрический показатель, для вычисления которого сравнивают средние и стандартные отклонения результатов двух измерений При этом используют формулу
г =
4, Коэффициент корреляции рангов Спирмена (г5)-это непараметрический показатель, с помощью которого пытаются выявить связь между рангами соответственных величин в двух рядах измерений.
5. Коэффициент корреляции может быть значимым лишь при достаточном числе пар данных, взятых в анализ. Это можно проверить с помощью таблицы пороговых значений г или rs для уровня значимости 0,05.
Результаты вычислений,
которые предложено было сделать читателям
Различие между данными контрольной и опытной группы после воздействия (критерий / для независимых выборок):
t = 3,11; л — 28; р < 0,05; достоверно.
."Ш> Пргиожапк' Б
Различие между данными до и после воздействия для опытной группы (критерий г для зависимых выборок):
достоверно.
Сравнение показателей эффективности и времени реакций для опытной группы после воздействия (коэффициент г Браве- Пирсона):
недостоверно.
Сравнение показателей эффективности и времени реакции для контрольной группы после воздействия (коэффициент rs Спирмена):
достоверно.
Дополнение Б,5. Таблицы
Таблица 2. 3 терпя X2 Л | начения кри- 0,05 | |
1 | 3,84 | |
2 | 5,99 | |
3 | 7,81 | |
4 | 9,49 | |
5 | 1Ы | |
6 | 12,6 | |
7 | 14,1 | |
8 | 15,5 | |
9 | 16,9 | |
10 | 18,3 | |
- Таблица 3* Достоверные | | |
значения Z | | |
Р | Z | |
0,05 | 1,64 | |
0,01 | 2,33 | |
Таблица 1. Значения кри- | ||
терия 1 Стьюдента | ||
| | |
I | 631 | |
2 | 2,92 | |
3 | 2,35 | |
4 | 2,13 | |
5 | 2,02 | |
6 | 1,94 | |
7 | 1*90 | |
Ь | 1,86 | |
9 | 1,83 | |
10 | 1,81 | |
11 | 1,80 | |
12 | 1J8 | |
13 | 1,77 | |
14 | 1J6 | |
15 | 1,75 | |
16 | 1,75 | |
17 | 1,74 | |
18 | 1,73 | |
19 | 1,73 | |
20 | 1,73 | |
21 | 1,72 | |
22 | 1,72 | |
23 | 1,71 | |
24 | 1,71 | |
25 | 1,71 | |
26 | 1*71 | |
27 | 1,70 | |
28 | 1,70 | |
29 | 1,70 | |
30 | 1,70 | |
40 | 1,68 | |
оо | 1,65 |