Введение в ос linux
Вид материала | Документы |
СодержаниеСтартовый виртуальный диск и модули ядра |
- Единый графический интерфейс. Введение в операционную систему Linux, 429.5kb.
- В Linux. 2 Приобретение и инсталляция Linux. 3 Учебник по Linux 4 Администрирование, 3589.91kb.
- Документация Calculate Linux, 12378.73kb.
- Gnu/Linux, 51.18kb.
- Лекция 17. Операционная система Linux, 126.24kb.
- Концепция развития спо в РФ 2 История Linux, 105.81kb.
- Windows против Linux, 88.72kb.
- RH253 Сетевые службы Red Hat Linux и администрирование безопасности, 45.9kb.
- Установка ос linux: основные моменты, 83.79kb.
- Исследование возможностей ос linux для приложений реального времени с обработкой разнородной, 98.25kb.
Стартовый виртуальный диск и модули ядраПересборка ядра нынче требуется очень редко. Во-первых, в Linux поддерживается несметное число различных внешних устройств, драйверы которых (особенно похожих, но разных) вполне могут помешать друг другу работать, если их использовать одновременно. Пришлось бы собирать множество разных ядер, без возможности указать пользователю, какое из них годится. Во-вторых, выяснением того, какой именно драйвер необходим найденному устройству, занимаются сейчас специальные программы, в распоряжении которых есть целые базы данных -- ядру такую работу делать неудобно, да и незачем. Это делает процедуру пересборки ядра почти что обязательной (пока не загружено базовое ядро, непонятно, какие драйверы добавлять в профильное). А в-третьих, пресборка ядра требует весьма высокой квалификации того, кто его пересобирает. Этот процесс нельзя ни автоматизировать, ни упростить. Утилита linuxconf, устроенная именно для этого на основе окон и меню, даёт на выходе работоспособное ядро в трёх случаях: (1) в руках профессионала, (2) при чётком следовании полной инструкции и (3) по случайности. ![]() Не надо вручную пересобирать ядро, даже если учебник по Linux это советует! ![]() Совсем другие времена настали, когда изобрели и активно внедрили в Linux загружаемые модули ядра. Модуль ядра -- это часть ядра Linux, которую можно добавлять и удалять во время работы системы. Модуль ядра -- не процесс, он работает в режиме супервизора и в таблице процессов не регистрируется: это набор подпрограмм для работы с определённым устройством, которые добавляются к возможностям ядра(5). При загрузке в память модуль компонуется с ядром, образуя с ним одно целое. Просмотреть список загруженных модулей можно командой lsmod, а подгрузить модуль в память, добавив его к ядру, и удалить его оттуда -- командами insmod и rmmod соответственно. # lsmod Module Size Used by Not tainted usb-uhci 21676 0 (unused) usbcore 58464 1 [usb-uhci] af_packet 12392 1 (autoclean) pcnet32 15140 1 (autoclean) mii 2544 0 (autoclean) [pcnet32] crc32 2880 0 (autoclean) [pcnet32] floppy 48568 0 (autoclean) subfs 4296 4 (autoclean) ac 1792 0 rtc 6236 0 (autoclean) ext3 62288 2 jbd 37852 2 [ext3]
Изменилось и базовое ядро: теперь оно включает в себя только устройства, необходимые для загрузки системы: главным образом диски и графическую консоль. Остальные устройства определятся уже самой системой, тогда можно будет и распознать экзотическую аппаратуру, и модуль для неё подгрузить. Однако полностью перевести драйверы всех внешних устройств в модули мешает вот какое соображение: что, если загрузка системы происходит именно с того устройства, чей модуль ещё не загружен в ядро, например, с дискового массива (RAID). Вторичный загрузчик и ядро можно, недолго думая, разместить на другом носителе (например, на лазерном диске) или добыть с дискового массива средствами BIOS (карты размещения позволяют не обращать внимания на логическую структуру RAID). Но как добыть модуль работы с RAID, тот самый, что распознает эту логическую структуру?
Подсистема загрузки GRUB умеет разбираться в файловых системах и даже подключать модули к ядру, однако для того, чтобы сделать процесс загрузки более или менее универсальным, пришлось бы обучить GRUB всем видам логики RAID, и всем способам подключения модулей. И то, и другое постоянно изменяется, и успевать за этими изменениями означает поддерживать собственную, параллельную Linux, дисковую подсистему. Вдумаемся. Для того, чтобы средствами Linux подключить модуль ядра, работающий с дисковым устройством, необходимо загрузить Linux с этого же устройства. Так ли это невозможно? Ведь если можно прочесть оттуда "ядро", то, наверное, можно прочесть и "Linux"? Более точно, вдобавок к одной области данных, соответствующей ядру, надо прочитать вторую, соответствующую некоторой уменьшенной до предела установке Linux, в которой содержатся только нужные программы и модули, загрузить оттуда "маленький Linux", который настроит и подключит злополучный RAID и запустит процесс загрузки полноценной системы оттуда. Предельно сжатый вариант Linux есть, это проект busybox, используемый во встроенных системах, где дорог каждый байт. Разместить файловую систему в памяти тоже легко, этим, например, занимается модуль tmpfs, который можно включить в базовое ядро (подробнее о типах файловых систем рассказано в лекции ссылка скрыта). Осталось только обучить подсистемы загрузки GRUB и LILO считывать не одну, а две области данных -- ядро и образ файловой системы. Ядру при этом передаётся параметр "пользуйся виртуальным диском", чтобы оно подключило загруженный образ в качестве временной корневой файловой системы. Можно также потребовать, чтобы память, занимаемая временной файловой системой, освобождалась в процессе дальнейшей загрузки. Такой механизм называется initrd (initial ram ddisk, где "ram" -- это не "баран", а random access memory, то есть оперативная память) или стартовым виртуальным диском. Стартовый виртуальный диск собирается по команде mkinitrd в соответствии с профилем компьютера, и записывается на диск по тем же правилам, что и ядро. В примере двухсистемной машины, за которой работал Мефодий, также был стартовый виртуальный диск, причём довольно маленький: [root@localhost root]# ls -lg /boot drwxr-xr-x 2 root 4096 Nov 20 21:08 grub -rw------- 1 root 205374 Nov 9 01:33 initrd-2.4.26-std-up.img lrwxrwxrwx 1 root 29 Nov 9 01:33 initrd-up.img -> initrd-2.4.26-std-up.img -rw------- 1 root 45056 Nov 20 19:07 map -rw-r--r-- 1 root 935892 Aug 3 21:59 vmlinuz-2.4.26-std-up lrwxrwxrwx 1 root 26 Nov 9 01:33 vmlinuz-up -> vmlinuz-2.4.26-std-up
Как видно из примера, ядро в четыре раза превосходит размером стартовый виртуальный диск. Стоит заметить, что и ядро, и образ диска упакованы с помощью утилиты gzip (причём ядро умеет распаковываться в памяти самостоятельно), поэтому их действительный размер больше. В файле map хранится карта размещения LILO, а упомянутые в lilo.conf и menu.lst файлы vmlinuz-up и initrd-up.img оказались символьными ссылками на файлы с более говорящими именами. Никаких требований к названиям ядер в Linux нет, это дело авторов дистрибутива. В этом случае в имени ядра и образа диска встречается версия ядра (2.4.26), тип сборки std (по-видимому, "standard") и тип архитектуры up (uniprocessor, т. е. однопроцессорная).
|