Нанотехнология

Вид материалаДокументы

Содержание


Норио Танигути
1980-х годах
8 октября 2008 года
Центры нанотехнологий
ФЦП «Развитие инфраструктуры наноиндустрии»
Цель программы
Определения и терминология
Загадки наномира
Подобный материал:

Нанотехнология

История


Во многих источниках первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана "Там внизу много места" (_en. « [altech.edu/~feynman/plenty.php There’s Plenty of Room at the Bottom] »), сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества.

Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы, при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.

//

Этот манипулятор Фейнманом предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий и Ван-дер-Ваальсовы силы будут все больше влиять на работу механизма. На последнем этапе полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать любое число таких машин. Эти машины смогут таким же способом, поатомной сборкой собирать макровещи. Это позволит сделать вещи на порядок дешевле — таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов.

До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. Принципиальный недостаток такого робота — принципиальная невозможность создания механизма из одного атома.

//



Рисунок 1. Иллюстрация концепции Р. Фейнмана, предлагавшего, чтобы роботы научились автономно делать свои уменьшенные копии. Тогда человечество завоюет наномир. Взято из Scientific American, 2001, Sept, p. 84.


Чтобы как-то стимулировать создание микрообъектов, Фейнман обещал заплатить 1000 долларов тому, кто соорудит электромоторчик размером 1/64 дюйма (1 дюйм » 2,5 см). И совсем скоро такой микромоторчик был создан (см. рис.2).




Рисунок 2. На фото слева Р. Фейнман рассматривает с помощью микроскопа сделанный микромотор, размером 380 мкм, показанный на рисунке справа. Взято из фотоархива Калифорнийского технологического института ссылка скрыта


С 1993 года премия имени Фейнмана присуждается ежегодно за выдающиеся достижения в области нанотехнологий.

Впервые термин «нанотехнология» употребил Норио Танигути в 1974 году. Он назвал этим термином производство изделий размером несколько нанометров.

В
Рисунок 3. Эрик Дрекслер – автор книги «Машины созидания: грядущая эра нанотехнологии». (фото взято из журнала Scientific American, 2001, Sept, p.74).
1980-х годах этот термин использовал Эрик К. Дрекслер в своих книгах: "Машины создания: грядёт эра нанотехнологии" ( "«Engines of Creation: The Coming Era of Nanotechnology» ") и "Nanosystems: Molecular Machinery, Manufacturing, and Computation ". Центральное место в его исследованиях играли математические расчёты, с помощью которых можно было проанализировать работу устройства размерами несколько нанометров. По определению Дрекслера нанотехнология - "ожидаемая технология производства, ориентированная на дешевое получение устройств и веществ с заранее заданной атомарной структурой".

После работы Дрекслер нанотехнология стала самостоятельной областью науки и превратилась в долгосрочный технический проект.

Но впервые в современной истории нанотехнологический прорыв был достигнут в 1883 году американским изобретателем Джорджем Истмэном (впоследствии основал известную компанию Kodak), который изготовил фотопленку.

1905 год - Швейцарский физик Альберт Эйнштейн опубликовал работу, в которой доказывал, что размер молекулы сахара составляет примерно 1 нанометр.

1931 год - Немецкие физики Макс Кнолл и Эрнст Руска создали электронный микроскоп, который впервые позволил исследовать нанообъекты.

1968 год - Альфред Чо\Alfred Cho и Джон Артур\John Arthur, сотрудники научного подразделения американской компании Bell, разработали теоретические основы нанотехнологии при обработке поверхностей.

1974 год - Японский физик Норио Танигучи ввел в научный оборот слово "нанотехнологии", которым предложил называть механизмы, размером менее одного микрона. Греческое слово "нанос" означает "гном", им обозначают биллионные части целого.

1981 год - Германские физики Герд Бинниг и Генрих Рорер создали микроскоп, способный показывать отдельные атомы.

1985 год - Американские физики Роберт Керл\Robert Curl, Хэрольд Крото\Harold Kroto и Ричард Смэйли\Richard Smalley создали технологию, позволяющую точно измерять предметы, диаметром в один нанометр.

1986 год - Нанотехнология стала известна широкой публике. Американский футуролог Эрик Дрекслер\Eric Dreхsler опубликовал книгу, в которой предсказывал, что нанотехнология в скором времени начнет активно развиваться.

1989 год - Дональд Эйглер\Donald Eigler, сотрудник компании IBM, выложил название своей фирмы атомами ксенона.

1993 год - В США начали присуждать Фейнмановскую Премию, которая названа в честь физика Ричарда Фейнамана\Richard P. Feynman, который в 1959 году произнес пророческую речь, в которой заявил, что многие научные проблемы будут решены лишь тогда, когда ученые научатся работать на атомарном уровне. В 1965 году Фейнману была присуждена Нобелевская премия за исследования в сфере квантовой электродинамики - ныне это одна из областей нанонауки.

1998 год - Голландский физик Сеез Деккер создал транзистор на основе нанотехнологий.

1999 год - Американские физики Джеймс Тур\James Tour и Марк Рид\Mark Reed определили, что отдельная молекула способна вести себя так же, как молекулярные цепочки.

2000 год - Администрация США поддержала создание Национальной Инициативы в Области Нанотехнологии\National Nanotechnology Initiative. Нанотехнологические исследования получили государственное финансирование. Тогда из федерального бюджета было выделено $500 млн.

2001 год - Марк Ратнер\Mark A. Ratner, автор книги "Нанотехнологии: Введение в Новую Большую Идею"\Nanotechnology: A Gentle Introduction to the Next Big Idea, считает, что нанотехнологии стали частью жизни человечества именно в 2001 году. Тогда произошли два знаковых события: влиятельный научный журнал Science назвал нанотехнологии - "прорывом года", а влиятельный бизнес-журнал Forbes - "новой многообещающей идеей". Ныне по отношению к нанотехнологиям периодически употребляют выражение "новая промышленная революция".

В октябре 2006 года Международным Советом по нанотехнологиям выпущена обзорная статья, в которой, в частности, говорилось о необходимости ограничения распространения информации по нанотехнологическим исследованиям в целях безопасности.

8 октября 2008 года было создано "Нанотехнологическое общество России", в задачи которого входит "просвещение российского общества в области нанотехнологий и формирование благоприятного общественного мнения в пользу нанотехнологического развития страны"

Индустрия


В общей сложности американская промышленность и индустрия других развитых стран сейчас применяют нанотехнологии в процессе производства, как минимум, 80 групп потребительских товаров и свыше 600 видов сырьевых материалов, комплектующих изделий и промышленного оборудования.

В 2004 году мировые инвестиции в сферу разработки нанотехнологий почти удвоились по сравнению с 2003 годом и достигли $10 млрд. На долю частных доноров — корпораций и фондов — пришлось примерно $6.6 млрд инвестиций, на долю государственных структур — около $3.3 млрд. Мировыми лидерами по общему объему капиталовложений в этой сфере стали Япония и США. Япония увеличила затраты на разработку новых нанотехнологий на 126 % по сравнению с 2003 годом (общий объем инвестиций составил $4 млрд.), США — на 122 % ($3.4 млрд.). В 2008 году финансирование России на развитие нанотехнологий достигло уровня США ($3.4 млрд.). Прогнозы показывают, что к 2015 году общая численность персонала различных отраслей нанотехнологической промышленности может дойти до 2 млн. человек, а суммарная стоимость товаров, производимых с использованием наноматериалов, составит, как минимум, несколько сотен миллиардов долларов и, возможно, приблизится к $1 трлн.

Центры нанотехнологий:
  • Германия:

* Creavis — исследовательское подразделение корпорации Degussa.
  • США:

* Центры развития нанотехнологий, финансируемые Национальным научным фондом (NSF)

* Национальная сеть нанотехнологической инфраструктуры ( "National Nanotechnology Infrastruture Network ", NNIN), включающая 13 организаций, занимающихся нанотехнологиями. Ведущей организацией является Корнелльский университет.

* Центр иерархического производства ( "Center for Hierarchical Manufacturing ", CHM) при Университете Массачусетса — Амхерст.

* Центр наномасштабных химических, электрических и механических производственных систем( "Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems, Nano-CEMMS ") при университете Иллинойса.

* Центр скоростного нанопроизводства ( "Center for High Rate Nanomanufacturing, CHN "), базирующийся в Северо-Восточном университете.

* Центр масштабируемого и интегрированного нанопроизводства ( "The Center for Scalable and Integrated Nanomanufacturing, SINAM ") при Калифорнийском университете в Беркли.

* Калифорнийский институт наносистем ( "California NanoSystems Institute ") Калифорнийского университета

* Компании Наномикс ( "NANOMIX ")
  • России:

* ГК «Роснанотех» ([[notekh.ru - Официальный сайт ГК «Роснанотех»] ])


ФЦП «Развитие инфраструктуры наноиндустрии»

Федеральная целевая программа «Развитие инфраструктуры наноиндустрии в Российской Федерациина 2008—2010 годы» утверждена Постановлением Правительства РФ от 2 августа 2007 № 498.

Цель программы: создание в Российской Федерации современной инфраструктуры национальной нанотехнологической сети для развития и реализации потенциала отечественной наноиндустрии.

Объём финансирования в рамках программы — 27,7 млрд.руб.

Программой назначены головные организации отраслей по направлениям развития нанотехнологий:

* Наноэлектроника (в части прикладных и ориентированных научно-исследовательских опытно-конструкторских работ) — ФГУП «НИИ физических проблем им. Ф.В. Лукина».

* Наноинженерия — Московский государственный институт электронной техники (технический университет).

* Функциональные наноматериалы для энергетики — ФГУП «Всероссийский НИИ неорганических материалов имени академика А.А. Бочвара».

* Функциональные наноматериалы для космической техники — ФГУП «Исследовательский центр имени М.В. Келдыша».

* Нанобиотехнологии — ФГУП Российский научный центр «Курчатовский институт».

* Конструкционные наноматериалы — ФГУП «ЦНИИ конструкционных материалов «Прометей»» иФГУП «Технологический институт сверхтвердых и новых углеродных материалов».

* Композиционные наноматериалы — ФГУП «Всероссийский НИИ авиационных материалов».

* Нанотехнологии для систем безопасности — ФГУП «Центральный НИИ химии и механики».

* Петрик Виктор Иванович — Академик РАЕН, автор открытия «Явление образования наноструктурных углеродных комплексов» — Петрик, Виктор Иванович

Определения и терминология


Нанотехнологии качественно отличаются от традиционных дисциплин, поскольку на таких масштабах привычные, макроскопические, технологии обращения с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые на привычных масштабах, становятся намного значительнее: свойства и взаимодействия отдельных атомов и молекул или агрегатов молекул, квантовые эффекты.

Нанотехнологии принято делить на три типа:
  • "инкрементных" - промышленное применение наночастиц в красках для автомобилей и автокосметике.
  • "эволюционные" - представлены наномерными датчиками, использующими флуоресцентные свойства квантовых точек (диаметром от 2 до 10 нанометров) и электрические свойства углеродных нанотрубок (диаметром от 1 до 100 нанометров.
  • "радикальные" - пока что не встречаются, их можно увидеть только в фантастических триллерах.

Нанообъекты делятся на 3 основных класса:
  1. трёхмерные частицы получаемые взрывом проводников, плазменным синтезом, восстановлением тонких плёнок и т.д.,
  2. двумерные объекты — плёнки, получаемые методами молекулярного наслаивания, CVD, ALD, методом ионного наслаивания и т.д.,
  3. одномерные объекты — вискеры, эти объекты получаются методом молекулярного наслаивания, введением веществ в цилиндрические микропоры и т. д.

Также существуют нанокомпозиты — материалы полученные введением наночастиц в какие либо матрицы.

Объекты нанотехнологий могут иметь характеристические размеры указанного диапазона:

* наночастицы, нанопорошки (объекты, у которых три характеристических размера находятся в диапазоне до 100 нм)

* нанотрубки, нановолокна (объекты, у которых два характеристических размера находятся в диапазоне до 100 нм)

* наноплёнки (объекты, у которых один характеристический размер находится в диапазоне до 100 нм).

А также, объектом нанотехнологий могут быть макроскопические объекты, атомарная структура которых контролируемо создаётся с разрешением на уровне отдельных атомов.

Наночастицы

Современная тенденция к миниатюризации показала, что вещество может иметь совершенно новые свойства, если взять очень маленькую частицу этого вещества. Частицы, размерами от 1 до 1000 нанометров обычно называют «наночастицами». Так, например, оказалось, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства, например, сверхтонкие пленки органических материалов применяют для производства солнечных батарей. Такие батареи, хоть и обладают сравнительно низкой квантовой эффективностью, зато более дешевы и могут быть механически гибкими. Удается добиться взаимодействия искусственных наночастиц с природными объектами наноразмеров — белками, нуклеиновыми кислотами и др. Тщательно очищенные, наночастицы могут самовыстраиваться в определенные структуры. Такая структура содержит строго упорядоченные наночастицы и также зачастую проявляет необычные свойства.

Загадки наномира


Почему наночастицы плавятся при низкой температуре?

Автор: Богданов Константин Юрьевич

19 февраля 2008

При уменьшении размеров частицы изменяются не только её механические свойства, но также и её термодинамические характеристики - температура её плавления становится гораздо ниже, чем у образцов обычного размера.

Lai с сотр. (Applied Physics Letters, 1998, v. 72: 1098-1100), используя сверхчувствительный калориметр с чувствительностью 0,1 нДж, показали, что температура плавления наночастиц алюминия падает с уменьшением размеров частицы. При этом температура плавления частицы размером 4 нм уменьшается на 140ºС по сравнению с температурой плавления образца алюминия обычных размеров (см. рис. 4).



Рисунок 4. Зависимость температуры плавления наночастиц алюминия Tm от их радиуса R в ангстремах. Взято из Lai et al. (Applied Physics Letters, 1998, v. 72:1098-1100).


Зависимости, аналогичные той, которая показана на рис.4, были получены для многих металлов. Так, при уменьшении диаметра наночастиц из олова до 8 нм их температура плавления падает на 100оС (от 230оС до 130оС). При этом самое большое падение температуры плавления (более чем на 500оС ) было обнаружено у наночастиц золота.

У наночастиц почти всё атомы на поверхности!

Причиной понижения температуры плавления у наночастиц служит то, что атомы на поверхности всех кристаллов находятся в особых условиях, а доля таких «поверхностных» атомов у наночастиц становится очень большой. Сделаем оценку этой «поверхностной» доли для алюминия.

Легко вычислить, что в 1 см³ алюминия содержится примерно 6.1022 атомов. Для простоты будем считать, что атомы находятся в узлах кубической кристаллической решётки, тогда расстояние между соседними атомами в этой решётке будет равно около 4.10-8 см. А значит, плотность атомов на поверхности составит 6.1014/см².

Теперь возьмём кубик из алюминия с ребром 1 см. Число поверхностных атомов у него будет равно 36.1014, а число атомов внутри - 6.1022. Таким образом, доля поверхностных атомов у такого алюминиевого кубика «обычных» размеров составляет всего 6.10-8.

Если сделать такие же вычисления для кубика из алюминия размером 5 нм, то окажется, что на поверхности такого «нанокубика» находится уже 12% всех его атомов. Ну, а на поверхности кубика размером 1 нм, вообще, находится больше половины всех атомов! Зависимость «поверхностной» доли от числа атомов показана на рис.5.



Рисунок 5. Зависимость «поверхностной» доли атомов (ось ординат) от кубического корня из их числа N в кубике кристаллического вещества.

Взято из лекции E. Roduner (Stuttgart, 2004).


На поверхности кристалла порядка нет!

С начала 60-х годов прошлого века учёные считают, что атомы, расположенные на поверхности кристаллов, находятся в особых условиях. Силы, заставляющие их находиться в узлах кристаллической решётки, действуют на них только снизу. Поэтому поверхностным атомам (или молекулам) ничего не стоит «уклониться от советов и объятий» молекул, находящихся в решётке, и если это происходит, то к такому же решению приходят сразу несколько поверхностных слоёв атомов. В результате, на поверхности всех кристаллов образуется плёнка жидкости. Кстати, кристаллы льда не являются исключением (см. рис. 6). Поэтому лёд и скользкий.



Рисунок 6. Схематическое изображение поперечного среза льда. Беспорядочное расположение молекул воды на поверхности соответствует плёнке жидкости, а гексагональная структура в толще – льду. Красные кружки – атомы кислорода; белые – атомы водорода.


Толщина жидкой плёнки на поверхности кристалла растёт с температурой, так как более высокая тепловая энергия молекул вырывает из кристаллической решётки больше поверхностных слоёв. Теоретические оценки и эксперименты показывают, что как только толщина жидкой плёнки на поверхности кристалла начинает превышать 1/10 размеров кристалла, кристаллическая решётка разрушается и частица становится жидкой.

Очевидно, что «легкоплавкость» наночастиц следует учитывать на любых нанопроизводствах. Известно, например, что размеры современных элементов электронных микросхем находятся в нанодиапазоне. Поэтому понижение температуры плавления кристаллических нанообъектов накладывает определённые ограничения на температурные режимы работы современных и будущих микросхем.

Источник: ссылка скрыта

Почему нанопроволоки такие прочные?

Автор: Богданов К.Ю.

20 февраля 2008

Как известно, прочность – это свойство твёрдых тел сопротивляться разрушению (разделению на части), а также необратимому изменению формы (пластической деформации) под действием внешних нагрузок. Когда цилиндрический образец с площадью поперечного сечения S растягивают силой F, он деформируется сначала упруго (обратимая деформация, см. О на рис.7), а затем пластически, т.е. необратимо (см. П рис.7). При деформации структурные неоднородности образца (дефекты кристаллической решётки или дислокации) начинают двигаться и, сталкиваясь с другими, образуют микротрещины. При этом, чем больше будет этих дислокаций и чем быстрее они смогут двигаться по образцу, тем больше микротрещин. Когда растягивающее напряжение σ (σ=F/S) достигает предела прочности, соседние микротрещины, соединяясь друг с другом, достигают критического размера, и образец разрушается.



Рисунок 7. Верх – схематическое изображения красного цилиндрического образца с площадью поперечного сечения S, растягиваемого силой F. Низ – взаимосвязь между механическим напряжением и относительной деформацией при растяжении образца.

Нанопроволока – это монокристалл, в кристаллической решётке которого практически отсутствуют дефекты (дислокации). Кроме того, поверхность нанопроволоки, имеющая чрезвычайно малый радиус кривизны (около 10 нм), сильно сжата и поэтому препятствует движению дислокации наружу, т.е. образованию микротрещины. Всё это приводит к тому, что у нанопроволок почти отсутствует пластическая деформации, а предел прочности в десятки раз выше, чем у обычных образцов (см. рис.8).



Рисунок 8. Взаимосвязь между механическим напряжением и относительной деформацией при растяжении микрообразцов разного диаметра из Ni и его сплавов Ni3Al-Ta (взято из Uchic et al, Science, 305, 986, 2004).

Источник: ссылка скрыта

Закон Ома для углеродных нанотрубок

Автор: Богданов Константин Юрьевич

20 февраля 2008

В наномире изменяются не только механические свойства, температуры плавления веществ, но и их электрические характеристики. В статье, опубликованной в 1998 году в журнале Science (Frank с сотр., Science, т. 280, с. 1744), показано, что сопротивление R цилиндрического резистора наноразмеров нельзя вычислять по известной формуле

R=ρL/S ,

где L – длина, S – площадь поперечного сечения, а ρ - удельное сопротивление материала резистора.

Оказалось, что сопротивление R0 нанорезисторов вообще не зависит от их размеров и вещества, из которого они сделаны, а определяется только двумя фундаментальными физическими константами

R0 =h/(2e2)=12,9 кОм, (1)

где e – заряд электрона (1,6×10-19 Кл), а h – постоянная Планка (6,6×10-34 Дж.с).

Величину R0 назвали квантом электрического сопротивления, имея ввиду, что в наномире сопротивления всех резисторов одинаковы.

Квантование электрического сопротивления – не единственная особенность проводимости в наномире. Оказалось, что в нанорезисторе не выделяется «джоулево тепло» при прохождении тока. Эту необычную проводимость в наномире, независящую от длины резистора, площади его поперечного сечения и не сопровождающуюся выделением теплоты, назвали баллистической (от греч. ballo – бросаю; баллистика - наука о движении артиллерийских снарядов, пуль и т.п.). Этим названием его авторы хотели подчеркнуть, что электроны, как искусно запущенные снаряды, движутся через нанорезистор, не сталкиваясь с его атомами, находящимися в узлах кристаллической решётки.

Углеродные нанотрубки – квантовые резисторы

Примером нанорезисторов, обладающих баллистической проводимостью, являются углеродные нанотрубки - протяженные цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров. Нанотрубки – это каркасные структуры или гигантские молекулы, состоящие только из атомов углерода. Углеродную нанотрубку легко себе представить, если вообразить, что вы сворачиваете в трубку один из молекулярных слоёв графита – графен (рис.9).



Рисунок 9. Один из способов воображаемого изготовления нанотрубки (справа) из молекулярного слоя графита (слева).


Способ сворачивания нанотрубок – угол между направлением оси нанотрубки по отношению к осям симметрии графена (угол закручивания) – во многом определяет её свойства. Конечно, никто не изготовляет нанотрубки, сворачивая их из графитового листа. Нанотрубки образуются сами, например, на поверхности угольных электродов при дуговом разряде между ними. При разряде атомы углероды испаряются с поверхности и, соединяясь между собой, образуют нанотрубки самого различного вида – однослойные, многослойные и с разными углами закручивания. В зависимости от угла закручивания нанотрубки могут обладать высокой, как у металлов, проводимостью, а могут иметь свойства полупроводников. Дальше речь пойдёт только о нанотрубках с высокой проводимостью.

Открытия квантовой проводимости было впервые сделано у углеродных нанотрубок, когда измеряли зависимость их сопротивления от длины, погружая их в ртуть. Диаметр нанотрубок составлял от 1,4 до 50 нм, а длина – от 1 до 5 мкм. Но, несмотря на такой большой разброс в размерах сопротивление ВСЕХ нанотрубок составляло около 12,9 кОм.

Почему электричество в наномире превращается в оптику?

Ток переносится в проводнике электронами, образующими внутри него так называемый электронный газ. Среднеквадратичный импульс p одного из таких электронов можно найти из следующего соотношения для среднеквадратичной энергии E частицы идеального газа:

E=p2/(2me) = 3kT/2 , (2)

где k – постоянная Больцмана (1,38×10-23 Дж/К), me – масса электрона (9,1×10-31 кг).

Подставляя в (2) Т=300 К, получаем p = 10,6×10-26 кг×м/с.

Известно, что каждую частицу можно представить себе в виде волны де Бройля с длиной волны λ = h/p. Для электрона проводимости в металле получаем λ = 6,2 нм. Это значит, что для углеродных нанотрубок диаметром несколько нанометров или меньше электрон проводимости будет проявлять, главным образом, волновые свойства. Через такие нанотрубки электроны будут проходить, как световые волны проходят через световоды. Таким образом, электричество в наномире превращается в оптику, а джоулево тепло рассеивается только на границах наномира, где нанотрубка, например, соединяется с проводником обычных размеров.

Чему равен квант сопротивления R0?

Попробуем вывести «на пальцах» красивейшую формулу (1), связывающую квант сопротивления с фундаментальными физическими константами. Так как нанотрубка обладает баллистической проводимостью, и джоулево тепло в ней не выделяется, можно считать, что её длина меньше длины свободного пробега электрона проводимости. Пусть между сечениями А и В нанотрубки приложено напряжение U, а сила тока в ней равна I.

Так как энергия не рассевается, то изменение энергии ΔЕ электрона между сечениями А и В составляет ΔЕ = eU. Это изменение энергии электрона произошло с ним за интервал времени Δt, равный времени пролёта между сечениями А и В. Соотношение неопределённостей Гейзенберга накладывает определённые ограничения на изменения ΔЕ и Δt :

ΔЕ · Δt ≈ h , => U ≈ h/(e· Δt) (3)

Оценим теперь силу тока в нанотрубке. Нанотрубка - одномерная квантовая структура. В ней, как в атоме гелия могут уживаться только два электрона, обладающие разными значениями спина. Это означает, что ток I между сечениями А и В нанотрубки равен:

I = 2e/Δt . (4)

Из соотношений (3) и (4) легко найти формулу для сопротивления R0 нанотрубки между сечениями А и В:

R0 = U/I = h/2e2 , которая, как и следовало ожижать совпала с формулой (1).

Так как нагрев у нанотрубок отсутствует, они способны пропускать токи огромной плотности - более 107 А/см2. Если бы у углеродных нанотрубок была обычная (не баллистическая) проводимость, то при токах аналогичной плотности их температура выросла бы до 20 000 К, что гораздо выше температуры их сгорания (700 К).

Существование баллистической проводимости даёт зелёный свет инженерам, старающимся ещё и ещё уменьшить размеры электронных микросхем. Уменьшайте элементы микросхем до наноразмеров, и схемы перестанут нагреваться!

Источник: ссылка скрыта

Почему цвет наночастиц может зависеть от их размера?

Автор: Богданов Константин Юрьевич

20 февраля 2008

В наномире изменяются многие механические, термодинамические и электрические характеристики вещества. Не являются исключением и их оптические свойства. Они тоже изменяются в наномире.

Нас окружают предметы обычных размеров, и мы привыкли к тому, что цвет предмета зависит только от свойств вещества, из которого он сделан или красителя, которым покрашен. В наномире это представление оказывается несправедливым, и это отличает нанооптику от обычной.

Лет 20-30 тому назад «нанооптики» вообще не существовало. Да и как могла быть нанооптика, если из курса обычной оптики следует, что свет не может "чувствовать" нанообъекты, т.к. их размеры существенно меньше длины волны света λ = 400 – 800 нм. Согласно волновой теории света нанобъекты не должны иметь тени, и свет от них не может отражаться. Сфокусировать видимый свет на площади, соответствующей нанообъекту, тоже нельзя. Значит, и увидеть наночастицы невозможно.

Однако, с другой стороны, световая волна всё-таки должна действовать на нанообъекты, как и любое электромагнитное поле. Например, свет, упав на полупроводниковую наночастицу, может своим электрическим полем оторвать от её атома один из валентных электронов. Этот электрон на некоторое время станет электроном проводимости, а потом опять вернётся «домой», испустив при этом квант света, соответствующий ширине «запрещённой зоны» - минимальной энергии, необходимой для того, чтобы валентному электрону стать свободным (см. рис.10).



Рисунок 10. Схематическое изображение уровней энергии и энергетических зон электрона в полупроводнике.


Таким образом, полупроводники даже наноразмеров должны чувствовать падающий на них свет, испуская при этом свет меньшей частоты. Другими словами, полупроводниковые наночастицы на свету могут становиться флуоресцентными, испуская свет строго опредёлённой частоты, соответствующей ширине «запрещённой зоны».

Светиться в соответствии с размером!

Хотя о флуоресцентной способности полупроводниковых наночастиц было известно ещё в конце XIX века, подробно это явление было описано лишь в самом конце прошлого века (Bruchez с сотр., Science, v. 281: 2013, 1998). И самое интересное, оказалось, что частота света, испускаемого этими частицами, уменьшалась с увеличением размера этих частиц (рис. 11).



Рисунок 11. Флюоресценция взвесей коллоидных частиц CdTe различного размера (от 2 до 5 нм, слева направо). Все колбы освещаются сверху синим светом одинаковой длины волны. Взято из H. Weller (Institute of Physical Chemistry, University of Hamburg).


Как показано на рис. 11, цвет взвеси (суспензии) наночастиц зависит от их диаметра. Зависимость цвета флюоресценции, т.е. её частоты, ν от размера наночастицы означает, что от размера частицы зависит также и ширина «запрещённой зоны» ΔЕ. Глядя на рисунки 10 и 11, можно утверждать, что при увеличении размеров наночастиц ширина «запрещённой зоны», ΔЕ должна уменьшаться, т.к. ΔЕ = hν. Такую зависимость можно объяснить следующим образом.

«Оторваться» легче, если вокруг много соседей

Минимальная энергия, необходимая для отрыва валентного электрона и перевода его в зону проводимости, зависит не только от заряда атомного ядра и положения электрона в атоме. Чем больше вокруг атомов, тем легче оторвать электрон, ведь ядра соседних атомов тоже притягивают его к себе. Этот же вывод справедлив и для ионизации атомов (см. рис. 12).



Рисунок 12. Зависимость среднего числа ближайших соседей по кристаллической решётке (ордината) от диаметра частицы платины в ангстремах (абсцисса). Взято из Frenkel с сотр. (J. Phys. Chem., B, v.105:12689, 2001).


На рис. 12. показано, как меняется среднее число ближайших соседей у атома платины при увеличении диаметра частицы. Когда число атомов в частице невелико, значительная их часть расположена на поверхности, а значит, среднее число ближайших соседей гораздо меньше того, которое соответствует кристаллической решетке платины (11). При увеличении размеров частицы среднее число ближайших соседей приближается к пределу, соответствующему данной кристаллической решётке.

Из рис. 12 следует, что ионизовать (оторвать электрон) атом тяжелее, если он находится в частице малых размеров, т.к. в среднем у такого атома мало ближайших соседей. На рис. 13 показано, как изменяется потенциал ионизации (работа выхода, в эВ) для наночастиц, содержащих различное число атомов железа N. Видно, что при росте N работа выхода падает, стремясь к предельному значению, соответствующему работе выхода для образцов обычных размеров. Оказалось, что изменение Авых с диаметром частицы D можно довольно хорошо описать формулой:

Авых = Авых0 + 2Ze2/D , (1)

где Авых0 - работа выхода для образцов обычных размеров, Z– заряд атомного ядра, а e– заряд электрона.



Рисунок 13. Зависимость потенциала ионизации (работы выхода, в эВ) от числа атомов N в наночастице железа. Взято из лекции E. Roduner (Stuttgart, 2004).


Очевидно, что ширина «запрещённой зоны» ΔЕ зависит от размеров полупроводниковой частицы таким же образом, как и работа выхода из металлических частиц (см. формулу 1) – уменьшается с ростом диаметра частицы. Поэтому длина волны флюоресценции полупроводниковых наночастиц растёт с ростом диаметра частиц, что и иллюстрирует рисунок 11.

Квантовые точки – рукотворные атомы

Полупроводниковые наночастицы часто называют «квантовыми точками». Своими свойствами они напоминают атомы – «искусственные атомы» имеющие наноразмеры. Ведь электроны в атомах, переходя с одной орбиты на другую, тоже излучают квант света строго определённой частоты. Но в отличие от настоящих атомов, внутреннюю структуру которых и спектр излучения мы изменить не можем, параметры квантовых точек зависят от их создателей, нанотехнологов.

Квантовые точки уже сейчас являются удобным инструментом для биологов, пытающихся разглядеть различные структуры внутри клеток. Дело в том, что различные клеточные структуры одинаково прозрачны и не окрашены. Поэтому, если смотреть на клетку в микроскоп, то ничего, кроме её краёв и не увидишь. Чтобы сделать заметной определённую структуру клетки, были созданы квантовые точки, способные прилипать к определённым внутриклеточным структурам (рис. 14).



Рисунок 14. Раскрашивание разных внутриклеточных структур в разные цвета с помощью квантовых точек. Красное – ядро; зелёные – микротрубочки; жёлтый – аппарат Гольджи. Источник.


Чтобы раскрасить клетку на рис. 14 в разные цвета, были сделаны квантовые точки трёх размеров. К самым маленьким, светящимся зелёным светом, приклеили молекулы, способные прилипать к микротрубочкам, составляющим внутренний скелет клетки. Средние по размеру квантовые точки могли прилипать к мембранам аппарата Гольджи, а самые крупные – к ядру клетки. Когда клетку окунули в раствор, содержащий все эти квантовые точки, и подержали в нём некоторое время, то они проникли внутрь и прилипли туда, куда могли. После этого клетку сполоснули в растворе, не содержащем квантовых точек, и положили под микроскоп. Как и следовало ожидать, вышеупомянутые клеточные структуры стали разноцветными и хорошо заметными (рис. 14).

Источник: ссылка скрыта

Статья «Нанотрибология: трение под микроскопом»

Автор: Богданов К.Ю.

22 февраля 2008

С трением мы сталкиваемся на каждом шагу, но без трения мы не сделали бы и шага. Невозможно представить себе мир без сил трения. В отсутствие трения многие кратковременные движения продолжались бы бесконечно. Земля сотрясалась бы от непрерывных землетрясений, так как тектонические плиты постоянно сталкивались между собой. Все ледники сразу же скатились бы с гор, а по поверхности земли носилась бы пыль от прошлогоднего ветра. Как хорошо, что всё-таки есть на свете сила трения!

С другой стороны, трение между деталями машин приводит к их износу и дополнительным расходам. Приблизительные оценки показывают, что научные исследования в трибологии – науки о трении – могли бы сберечь около от 2 до 10% национального валового продукта.

Два самых главных изобретения человека - колесо и добывание огня - связаны с силой трения. Изобретение колеса позволило значительно уменьшить силу, препятствующую движению, а добывание огня поставило силу трения на службу человеку. Однако до сих пор учёные далеки от полного понимания физических основ силы трения. И вовсе не потому, что людей с некоторых пор перестало интересовать это явление.

Первая формулировка законов трения принадлежит великому Леонардо (1519), который утверждал, что сила трения, возникающая при контакте тела с поверхностью другого тела, пропорциональна силе прижатия, направлена против направления движения и не зависит от площади контакта. Этот закон был заново открыт через 180 лет Г. Амонтоном, а затем уточнён в работах Ш. Кулона (1781). Амонтон и Кулон ввели понятие коэффициента трения как отношения силы трения к нагрузке, придав ему значение физической константы, полностью определяющей силу трения для любой пары контактирующих материалов. До сих пор именно эта формула

Fтр = μN, (1)

где Fтр - сила трения, N – составляющая силы прижатия, нормальная к поверхности контакта, а μ - коэффициент трения, является единственной формулой, которую можно найти в школьных учебниках по физике.

В течение двух столетий экспериментально доказанный закон (1) никто не смог опровергнуть и до сих пор он звучит так, как 200 лет назад:

Сила трения прямо пропорциональна нормальной составляющей силы, сжимающей поверхности скользящих тел, и всегда действует в направлении, противоположном направлению движения.

Сила трения не зависит от величины поверхности соприкосновения.

Сила трения не зависит от скорости скольжения.

Сила трения покоя всегда больше силы трения скольжения.

Силы трения зависят только от двух материалов, которые скользят друг по другу.

Всегда ли справедлив классический закон трения?

Уже в XIX веке стало ясно, что закон Амонтона-Кулона (1) не всегда правильно описывает силу трения, а коэффициенты трения отнюдь не являются универсальными характеристиками. Прежде всего, было отмечено, что коэффициенты трения зависят не только от того, какие материалы контактируют, но и от того, насколько гладко обработаны контактирующие поверхности. Выяснилось, например, что сила трения в вакууме всегда больше, чем при нормальных условиях (см. таблицу внизу).

коэффициент трения покоя, μ

материалы

в вакууме

на воздухе

сталь - сталь

0,8

0,3

медь - медь

1,2

0,8


Комментируя эти расхождения, лауреат Нобелевской премии по физике Р.Фейнман в своих лекциях писал - …Таблицы, в которых перечислены коэффициенты трения "стали по стали", "меди по меди" и прочее, всё это сплошное надувательство, ибо в них этими мелочами пренебрегают, а ведь они-то и определяют значение μ . Трение "меди о медь" и т.д. – это на самом деле трение "о загрязнения, приставшие к меди".

Можно, конечно, пойти по другому пути и, изучая трение «меди по меди», измерять силы при движении идеально отполированных и дегазированных поверхностей в вакууме. Но тогда два таких куска меди просто слипнутся, и коэффициент трения покоя начнёт расти со временем, прошедшем с начала контакта поверхностей. По тем же причинам коэффициент трения скольжения будет зависеть от скорости (расти с её уменьшением). Значит, точно определить силу трения для чистых металлов тоже невозможно.

Тем не менее, для сухих стандартных поверхностей классический закон трения почти точен, хотя причина такого вида закона до самого последнего времени оставалась непонятной. Ведь теоретически оценить коэффициент трения между двумя поверхностями никто так и не смог.

Как атомы трутся друг о друга?

Сложность изучения трения заключается в том, что место, где этот процесс происходит, скрыт от исследователя со всех сторон. Несмотря на это, учёные уже давно пришли к заключению, что сила трения связана с тем, что на микроскопическом уровне (т.е. если посмотреть в микроскоп) соприкасающиеся поверхности очень шероховатые даже, если они были отполированы. Поэтому скольжение двух поверхностей друг по другу может напоминать фантастический случай, когда перевёрнутые Кавказские горы трутся, например, о Гималаи.

Прежде думали, что механизм трения несложен: поверхность покрыта неровностями, и трение есть результат следующих друг за другом циклов «подъём-спуск» скользящих частей. Но это неправильно, ведь тогда не было бы потерь энергии, а при трении расходуется энергия.

Более близкой к действительности можно считать следующую модель трения. При скольжении трущихся поверхностей микронеровности задевают друг за друга, и в точках соприкосновения противостоящие друг другу атомы "сцепляются". При дальнейшем относительном движении тел эти сцепки рвутся, и возникают колебания атомов, подобные тем, какие происходят при отпускании растянутой пружины. Со временем эти колебания затухают, а их энергия превращается в тепло, растекающееся по обоим телам. В случае скольжения мягких тел возможно также разрушение микронеровностей, так называемое "пропахивание", в этом случае механическая энергия расходуется на разрушение атомарных связей.

Таким образом, если мы хотим изучать трение нам надо ухитриться двигать песчинку, состоящую из несколько атомов вдоль поверхности на очень маленьком расстоянии от неё, измеряя при этом силы, действующие на эту песчинку со стороны поверхности. Это стало возможным только после изобретения атомно-силовой микроскопии. Создание атомно-силового микроскопа (АСМ), способного чувствовать силы притяжения и отталкивания, возникающие между отдельными атомами, дало возможность, наконец, «пощупать», что такое силы трения, открыв новую область науки о трении – нанотрибологию.

С помощью АСМ с начала 1990 годов проводятся систематические исследования силы трения микрозондов при их скольжения вдоль различных поверхностей и зависимости этих сил от силы прижатия. Оказалось, что для обычно используемых зондов, сделанных из кремния, микроскопическая сила трения скольжения составляет около 60-80% от прижимающей силы, которая составляет не более 10 нН (см. рис. 3, верх). Как и следовало ожидать, сила трения скольжения растёт с размером микрозонда, так как количество атомов, одновременно его притягивающих, увеличивается.

Таким образом, сила трения скольжения микрозонда зависит от площади его контакта с поверхностью, что противоречит классическому закону трения. Оказалось также, что сила трения скольжения не становится нулевой, при отсутствии силы, прижимающей микрозонд к поверхности. Да, это и понятно, так как окружающие микрозонд атомы поверхности так близко к нему расположены, что притягивают его даже в отсутствие внешней силы сжатия. Поэтому и основное предположение классического закона – о прямой пропорциональной зависимости силы трения от силы сжатия – тоже не соблюдается в нанотрибологии.

Однако все эти расхождения между классическим законом (1) и данными нанотрибологии, полученными с помощью АСМ, легко устраняются. При увеличении силы, прижимающей скользящей тело, увеличивается количество микроконтактов, а значит, увеличивается и суммарная сила трения скольжения. Поэтому никаких противоречий между только что полученными данными учёных и старым законом нет.

Долгое время было принято считать, что, принуждая одно тело скользить по другому, мы ломаем малые неоднородности одного тела, которые цепляются за неоднородности поверхности другого, и для того, чтобы ломать эти неоднородности, и нужна сила трения. Поэтому старые представления часто связывают возникновение силы трения с повреждением микровыступов трущихся поверхностей, их, так называемым износом. Нанотрибологические исследования с использованием АСМ и других современных методик показали, что сила трения между поверхностями может быть даже в тех случаях, когда они не повреждаются. Причиной такой силы трения служат постоянно возникающие и рвущиеся связи между трущимися атомами.

Источник: ссылка скрыта

Источники


Интернет-сайты

f.ru/ - журнал «Российские нанотехнологии»

ournal.ru/ - Российский электронный наножурнал

e/category/nano/ - научно-популярный портал о нанотехнологиях, биогенетике и полупроводниках

5.narod.ru/ - «Что могут нанотехнологии?», научно- популярный сайт о нанотехнологиях .

are.ru/ Официальный сайт потребителей нанотоваров и наноуслуг в России

t.ru/ Нано Дайджест — интернет-журнал о нанотехнологиях

msu.su/rus/jvho/2002-5/4.pdf Сокращенный перевод лекции «Там внизу полно места» (1959)

org/journals/nalefd/ Журнал Nano Letters на английском языке

rg/EJ/journal/0957-4484 Журнал Nanotechnology

eter.ru Сайт нанотехнологического сообщества «Нанометр»

ewsnet.ru NanoNewsNet — новости нанотехнологий

ortal.ru Центр Нанотехнологий Росатома


Много интересного можно узнать о нанотехнологиях на следующих веб-сайтах:

Нанотехнологическое сообщество - eter.ru/

Нанотехнологии –NanjNewsNet - ewsnet.ru/

Национальный информационно-аналитический центр "Нанотехнологии и наноматериалы" - no.ru/

НАНОенот – сайт о нанотехнологиях - pisem.net/nano.htm

Foresight Nanotech Institute – Институт предвидения в нанотехнологиях ight.org/