ДеформационноЕ поведениЕ в области микропластической деформации титана и сплава ti-Al-v с ультрамелкозернистой структурой при различных видах термосилового воздействия 05. 16. 01 Металловедение и термическая обработка металлов

Вид материалаАвтореферат

Содержание


26» октября
Общая характеристика работы
Цель настоящей работы
Научная новизна
Практическая значимость работы
Положения, выносимые на защиту
Связь работы с научными программами и темами
Личный вклад автора в работу.
Структура и объём диссертации
Содержание работы
В разделе III
Основные выводы
Цитируемая литература
Подобный материал:
  1   2   3


На правах рукописи


Кашин Олег Александрович


деформационноЕ поведениЕ в области

микропластической деформации ТИТАНА И СПЛАВА Ti-Al-V

с УЛЬТРАМЕЛКОЗЕРНИСТОЙ структурой

при различных видах термосилового воздействия


05.16.01 – Металловедение и термическая обработка металлов


автореферат

диссертации на соискание ученой степени
доктора технических наук


Томск 2007

Работа выполнена в Институте физики прочности
и материаловедения СО РАН и Сибирском физико-техническом институте Томского государственного университета


Научные консультанты: доктор физико–математических наук, профессор Колобов Юрий Романович


доктор физико–математических наук, профессор Дударев Евгений Федорович

Официальные оппоненты: доктор технических наук, ст. научн. сотр.

Полетика Ирина Михайловна


доктор технических наук, профессор

Батаев Анатолий Андреевич


доктор физико–математических наук, профессор Старенченко Владимир Александрович


Ведущая организация: Институт физики металлов УрО РАН


Защита диссертации состоится « 26» октября 2007 г. в 1430 часов на заседании диссертационного совета Д 003.038.01 в Институте физики прочности и материаловедения СО РАН по адресу: 634021, г. Томск, пр. Академический, 2/1


С диссертацией можно ознакомиться в библиотеке Института физики прочности и материаловедения СО РАН


Автореферат разослан «___»____________2007 г.


Ученый секретарь диссертационного совета,

доктор технических наук, профессор Сизова О. В.

Общая характеристика работы

Актуальность работы. Эффективным способом повышения механических свойств поликристаллических металлов и сплавов при невысоких гомологических температурах является уменьшение размера зерен. Получение беспористых объемных металлических материалов с ультрамелкозернистой структурой (размер зерен менее 1 мкм) стало возможным с развитием методов интенсивной пластической деформации, таких как равноканальное угловое прессование [1] и разностороннее прессование [2].

К моменту постановки настоящей работы имелось ограниченное количество экспериментальных данных по определению физико-механических характеристик материалов, имеющих объёмную ультрамелкозернистую структуру, полученную методами интенсивной пластической деформации. Были изучены только некоторые особенности структуры и физико-механические свойства металлических материалов, подвергнутых воздействию интенсивной пластической деформации. Практически отсутствовали исследования закономерностей деформационного поведения ультрамелкозернистых металлов в области микропластической деформации при различных температурно-силовых воздействиях. В то же время, как известно, рабочие напряжения большинства конструкционных материалов в реальных условиях ниже предела текучести. Однако даже при таких напряжениях в процессе длительной эксплуатации в материалах развиваются деформационные процессы, которые в конечном итоге могут привести к выходу изделия из строя. Особенно остро эта проблема стоит при циклическом нагружении, когда накопление усталостных повреждений приводит к преждевременному разрушению материала.

Для крупнозернистых поликристаллических металлов и сплавов с размером зерен более 5 мкм были выяснены закономерности и механизмы микропластической деформации и разработана теория деформационного поведения поликристаллов при напряжениях ниже физического предела текучести [3]. Эти исследования позволили обоснованно выбирать уровень безопасных рабочих напряжений, а также на основании результатов испытаний при квазистатическом нагружении делать прогнозные оценки об усталостных свойствах материалов. Специфическая структура ультрамелкозернистых материалов может внести существенные коррективы в развитие деформации при различных условиях нагружения. Поэтому исследования закономерностей и механизмов деформационного поведения в области микродеформации ультрамелкозернистых металлических материалов в зависимости от их структурно-фазового состояния, изучение закономерностей эволюции структуры и стабильности свойств ультрамелкозернистых материалов при различных температурно-силовых воздействиях весьма актуальны. Проведение таких исследований позволило бы выявить возможность применения для ультрамелкозернистых материалов разработанных ранее модельных представлений о деформационном поведении крупнозернистых поликристаллических материалов при напряжениях ниже предела текучести.

Ряд характеристик металлов и сплавов (коррозионные, триботехнические, усталостные) в значительной мере определяются структурно-фазовым состоянием поверхностных слоев. Для крупнозернистых металлов и сплавов имеются многочисленные исследования эффективности влияния поверхностных обработок и нанесения покрытий на их свойства. Ультрамелкозернистые металлы и сплавы, полученные воздействием интенсивной пластической деформации, в отличие от рекристаллизованных крупнозернистых металлов обладают большой запасенной упругой энергией, которая в значительной степени связана с неравновесными границами зерен [4]. При одном и том же способе поверхностной модификации структурно-фазовое состояние в поверхностных слоях у металлов с ультрамелкозернистой структурой может быть иным, чем у крупнозернистых, то есть может иметь место различие в изменении физико-химических и механических свойств. Поэтому данные об изменении свойств при поверхностной обработке крупнозернистых металлических материалов переносить на материалы с ультрамелкозернистой структурой в общем случае не представляется возможным.

Изменение структурно-фазового состояния и свойств приповерхностных слоев может оказать существенное влияние на закономерности развития микропластической деформации. В связи с этим актуальными являются сравнительные исследования влияния поверхностных обработок, проводимых в одинаковых режимах, на свойства металлов в крупнозернистом и ультрамелкозернистом состояниях. Можно ожидать, что сочетание методов получения объёмной ультрамелкозернистой структуры и дополнительной модификации поверхностных слоев обеспечит получение материалов с высокими эксплуатационными свойствами. Однако работ, посвященных выяснению влияния поверхностных обработок на закономерности деформационного поведения в области микропластической деформации крупнозернистых и ультрамелкозернистых металлов, до сих пор не проводилось.

В большинстве случаев методы поверхностной модификации материалов связаны с термическим воздействием, которое при применении таких методов к ультрамелкозернистым материалам может привести к деградации ультрамелкозернистой структуры и снижению эксплуатационных свойств. Для обоснованного выбора способов и технологических режимов модификации поверхности с целью повышения эксплуатационных свойств материалов актуальными являются как исследования закономерностей изменения структуры в приповерхностных слоях при поверхностных обработках, так и данные о термостабильности ультрамелкозернистой структуры.

Титан технической чистоты и сплавы на его основе широко используются в качестве конструкционных материалов в авиации и космонавтике, в различных устройствах, работающих при криогенных температурах, в приборостроении, химической промышленности и медицине. В связи с этим проблеме повышения эксплуатационных свойств этих материалов путем формирования заданного структурно-фазового состояния и обработок поверхности уделяется большое внимание [5, 6]. Путем создания в титане и его сплавах ультрамелкозернистой структуры методами интенсивной пластической деформации удается существенно повысить их прочностные характеристики [1]. Для использования титана и его сплавов с ультрамелкозернистой структурой в реальных условиях эксплуатации актуальными являются исследования закономерностей деформационного поведения в области микропластической деформации при различных условиях нагружения. В технике и медицине наиболее широко используют титан технической чистоты и двухфазный α+β титановый сплав Ti-Al-V (ВТ6), поэтому данные сплавы были выбраны в качестве материалов для исследований в настоящей работе.

Сплав ВТ6 имеет более высокие прочностные характеристики по сравнению с нелегированным титаном, поэтому именно он преимущественно применяется в качестве медицинских имплантатов и конструкций протезов. В то же время сплав ВТ6 содержит алюминий и ванадий, которые оказывают вредное воздействие на живой организм. Титан технической чистоты является наиболее предпочтительным металлом для длительно работающих в живом организме имплантатов вследствие его высокой биосовместимости и отсутствия вредных легирующих добавок. Однако даже после термомеханических обработок титан по своим прочностным и усталостным свойствам уступает высоколегированным титановым сплавам [7]. Повышение эксплуатационных свойств нелегированного титана путем создания в нем ультрамелкозернистой структуры и обработок поверхности позволяет расширить области его использования, прежде всего в медицине.

Необходимость проведения исследований закономерностей микропластической деформации и влияния обработок поверхности на эксплуатационные свойства обусловлена, помимо научной новизны, и практической значимостью, поскольку эти исследования позволяют сформулировать рекомендации для выбора оптимальных технологических режимов получения ультрамелкозернистой структуры и поверхностных обработок, обеспечивающих повышение эксплуатационных свойств, и определить эксплуатационные интервалы рабочих напряжений и температур.

Цель настоящей работы - установить влияние ультрамелкозернистой структуры на закономерности и механизмы деформационного поведения в области микропластической деформации и эксплуатационные свойства титана ВТ1-0 и двухфазного α+β сплава Ti-Al-V (ВТ6) при различных видах термосилового воздействия и поверхностных обработок.

Для реализации указанной цели в работе решались следующие задачи:
  1. Экспериментально исследовать закономерности деформационного поведения в области микропластической деформации титана технической чистоты и сплава ВТ6 с объемной ультрамелкозернистой структурой при квазистатическом и циклическом нагружении и при микроползучести, в том числе и при повышенных температурах.
  2. Исследовать методом внутреннего трения влияние объемной ультрамелкозернистой структуры и неравновесности структуры границ зерен на зернограничное микропроскальзывание титана технической чистоты и сплава ВТ6.
  3. Исследовать влияние термомеханических обработок на закономерности деформационного поведения в области микропластической деформации титана технической чистоты с объемной ультрамелкозернистой структурой при квазистатическом и циклическом нагружении, в том числе и при повышенных температурах.
  4. Установить влияние поверхностных обработок при использовании методов пластической деформации, ионной имплантации, ионного азотирования, электроискрового легирования, на закономерности развития микропластической деформации ультрамелкозернистого титана при квазистатическом и циклическом нагружении.
  5. На основании полученных результатов исследований, разработанного в процессе выполнения работы оборудования и режимов термомеханических обработок и обработок поверхности разработать способы повышения эксплуатационных характеристик (размерной стабильности, прочности, износостойкости, возможности восстановления геометрических размеров изношенных деталей) титана и других материалов (композиционных материалов металл-углеродные волокна, инструментальных сталей) путем создания ультрамелкозернистой структуры в объеме и в поверхностных слоях.

Научная новизна

В работе впервые:

- установлено на примере титана технической чистоты и сплава ВТ6 при квазистатическом и циклическом нагружении и в условиях ползучести подобие развития микропластической деформации при крупнозернистой и ультрамелкозернистой структурах. Показано, что при обеих зеренных структурах при квазистатическом нагружении микропластическая деформация развивается в две стадии; на первой стадии связь между напряжением и степенью микропластической деформации линейная, на второй – параболическая. Установлено, что при переходе от крупнозернистой структуры к ультрамелкозернистой повышается сопротивление микропластической деформации при квазистатическом и циклическом нагружении и при ползучести;

- показано, что на второй стадии микропластической деформации зависимость напряжения течения от величины зерна подчиняется уравнению Холла-Петча в том случае, когда при всех размерах зерен имеющиеся в ненагруженном материале дислокации заблокированы и не принимают участия в развитии пластической деформации. При наличии в ненагруженном ультрамелкозернистом материале незаблокированных дислокаций, введенных, например, глубокой пластической деформацией при температурах, когда диффузионные процессы заторможены, соотношение Холла-Петча нарушается;

- установлено, что в титане технической чистоты с разной концентрацией примесей при переходе от крупнозернистой структуры к ультрамелкозернистой эффект упрочнения в области микропластической деформации практически не зависит от содержания примесей;

- на основании исследований зернограничного внутреннего трения обнаружен эффект понижения температуры начала и интенсивного развития зернограничного микропроскальзывания в титане и сплаве ВТ6 при переходе от крупнозернистой структуры с совершенными границами зерен к ультрамелкозернистой структуре с несовершенными границами зерен, обусловленный уменьшением энергии активации зернограничного массопереноса;

- экспериментально выяснено влияние поверхностных обработок методами поверхностного деформирования, ионной имплантации, ионного азотирования и электроискрового легирования на закономерности деформационного поведения в области микропластической деформации ультрамелкозернистого титана технической чистоты.

Практическая значимость работы

Результаты фундаментальных исследований закономерностей микропластической деформации при различных видах нагружения позволили разработать способ термомеханической обработки титана технической чистоты для достижения максимально высоких значений усталостной прочности, заключающийся в последовательном использовании интенсивной пластической деформации при повышенных температурах (600÷700 К) для формирования ультрамелкозернистой структуры и прокатки при комнатной температуре на глубокие степени деформации (80÷90%) без промежуточных отжигов, что обеспечивает измельчение зерен и образование в материале незаблокированных дислокаций, эффективно способствующих релаксации концентраторов напряжений, возникающих в процессе циклического нагружения.

Определены технологические режимы поверхностных обработок методами поверхностного деформирования, ионной имплантации, электроискрового легирования, обеспечивающие сохранение объёмной ультрамелкозернистой структуры в титане и повышение его эксплуатационных характеристик.

Полученные в работе результаты по исследованию влияния поверхностных обработок на изменение микроструктуры поверхностных слоев ультрамелкозернистого титана использованы для разработки способов повышения эксплуатационных свойств (прочности, износостойкости, возможности восстановления геометрических размеров изношенных деталей) других материалов – сталей и композиционных мате­риалов с объемной или поверхностной ультрамелкозернистой структурой.

Положения, выносимые на защиту
  1. Установленное на примере титана технической чистоты и сплава ВТ6 при различных видах термосилового воздействия подобие деформационного поведения в области микропластической деформации крупнозернистых и ультрамелкозернистых металлических поликристаллов: при обеих зеренных структурах при квазистатическом нагружении микропластическая деформация развивается в две стадии; на первой стадии связь между напряжением и степенью микропластической деформации линейная, на второй – параболическая. При циклическом нагружении и микроползучести при комнатной температуре накопление микропластической деформации происходит по логарифмическому закону.
  2. Экспериментально установленные условия выполнимости соотношения Холла-Петча: при внешних напряжениях, соответствующих второй стадии микропластической деформации, зависимость напряжения течения и ограниченного предела выносливости титана технической чистоты и сплава ВТ6 от величины зерна подчиняется уравнению Холла-Петча в том случае, когда при всех размерах зерен имеющиеся в ненагруженном материале дислокации заблокированы.
  3. Экспериментально определенные максимальные температуры стабильности структуры и механических свойств титана технической чистоты и сплава ВТ6 в области микропластической деформации, соответствующие температурам интенсивной пластической деформации и началу интенсивного развития диффузионных процессов. Усиление температурной зависимости напряжения течения в области микропластической деформации ультрамелкозернистого титана после глубокой пластической деформацией при комнатной температуре, приводящей к измельчению зерен до 100-200 нм и повышению неравновесности структуры границ зерен.
  4. Способ термомеханической обработки титана технической чистоты для достижения максимально высоких значений усталостной прочности, заключающийся в последовательном использовании интенсивной пластической деформации при повышенных температурах (600÷700 К) для формирования ультрамелкозернистой структуры и прокатки при комнатной температуре на глубокие степени деформации (80÷90%) без промежуточных отжигов.
  5. Установленный эффект понижения температуры начала и интенсивного развития зернограничного микропроскальзывания в титане и сплаве ВТ6 при переходе от крупнозернистой структуры с совершенными границами зерен к ультрамелкозернистой структуре с несовершенными границами зерен, обусловленный уменьшением энергии активации зернограничного массопереноса.
  6. Технологические режимы обработок поверхности методами поверхностного деформирования, ионной имплантации, ионного азотирования и электроискрового легирования для повышения эксплуатационных характеристик (размерной стабильности, микротвердости, износостойкости, восстановления геометрических размеров изношенных деталей) ультрамелкозернистого титана технической чистоты при сохранении объемной ультрамелкозернистой структуры, сталей 9ХФМ и 65Х13 и композиционных мате­риалов металл-углеродные волокна.


Связь работы с научными программами и темами

Диссертационная работа выполнена в Институте физики прочности и материаловедения СО РАН и Сибирском физико-техническом институте Томского государственного университета в соответствие с планами государственных научных программ и грантов:

«Закономерности и механизмы формирования наноструктурных состояний, деформационного поведения и разрушения объемных многоуровневых металлических материалов и композиций с разной устойчивостью кристаллической решетки к термосиловым воздействиям. Разработка на их основе перспективных материалов с высокими эксплуатационными характеристиками для медицины и техники» (проект 3.6.2.2.по приоритетному направлению 3.6 «Механика твердого тела, физика и механика деформирования и разрушения, механика композиционных и наноматериалов, трибология», 2007-2009 гг.); «Исследование роли диффузионно-контролируемых процессов в формировании структуры и упруго-пластических свойств многоуровневых объемных наноструктурных композитов с металлической матрицей. Разработка на их основе перспективных материалов для медицины и техники» (проект по приоритетному направлению 8. Проблемы деформирования и разрушения структурно-неоднородных сред и конструкций, 2004-2006 гг.); "Наноструктурные материалы для медицинского применения" (проект МНТЦ № 2070р, 2001 2002 гг.); «Разработка наноструктурных титановых материалов для медицинского применения» (проект ИНТАС № 01-320, 2002-2004 гг.); «Деформационное поведение и разрушение наноструктурных металлов и сплавов при квазистатическом и динамическом нагружениях» (проект № 9.5 по программе фундаментальных исследований Президиума Российской академии наук «Теплофизика и механика энергетических воздействий», 2004-2006 гг.); «Диффузия и упругопластические свойства наноструктурных материалов для медицины и техники» (проект № 8.13 по программе фундаментальных исследований Президиума Российской академии наук «Фундаментальные проблемы физики и химии наноразмерных систем и наноматериалов», 2004-2005 гг); «Исследование механизмов модификации структуры и свойств металлов и сплавов с многоуровневой структурой, сформированной при воздействии ионных пучков» (интеграционный проект фундаментальных исследований СО РАН № 2.4, 2006-2008 гг.); «Создание высокоэффективной технологии получения ультрадисперсных структур в крупнозернистых литых заготовках конструкционных металлов и сплавов методами интенсивной пластической деформации» (проект ИН-22.3/003 федеральной целевой научно-технической программы «Исследования и разработки по приоритетным направлениям развития науки и техники» на 2002-2006 годы, 2005-2006 гг.); «Эволюция микроструктуры и упруго-пластических свойств наноструктурного титана при внешнем силовом и температурном воздействии» (грант РФФИ № 2000-2001 гг.); «Компьютерное конструирование износостойкости рабочих поверхностей режущего и штампового инструмента на основе физической мезомеханики деформации и разрушения» (проект № 07.08.008.00.М федеральной целевой научно-технической программы «Новые материалы», 1996-1998 гг.).

Апробация работы. Основные результаты проведенных исследований докладывались и обсуждались на международных, всесоюзных, всероссийских и региональных конференциях, совещаниях, симпозиумах и семинарах:

Научно-практическая конференция материаловедческих обществ России «Новые конструкционные материалы». Москва, 2000; Вторая Международная научно-техническая конференция «Экспериментальные методы в физике структурно-неоднородных конденсированных сред». Барнаул, 2001; V Всероссийская конференция "Физико-химия ультрадисперсных (нано-) систем". Екатеринбург, 2001; Всероссийская научно-практическая конференция "Перспективные технологии физико-химической размерной обработки и формирования эксплуатационных свойств металлов и сплавов". Уфа, 2001; 3 Международная

конференция «Физика и промышленность 2001». Москва, Голицино, 2001; Международный технологический конгресс «Современные технологии при создании продукции военного и гражданского назначения». Омск, 2001; VI Международная конференция «Компьютерное конструирование новых материалов и технологий». Томск, 2001; VI Всероссийская (международная) конференция «Физикохимия ультрадисперсных систем». Томск, 2002; Конференция "Ультрадисперсные порошки, наноструктуры, материалы". Красноярск, 2003; X APAM topical seminar and III conference "Materials of Siberia" "Nanoscience and technology" devoted to 10-th anniversary of APAM. Novosibirsk, Russia, 2003; XV Международная конференция «Физика прочности и пластичности материалов». Тольятти, 2003; International Symposium on Physical Mesomechanics and Computer-Aided Design of Advanced Materials and Technologies. Томск, 2003; Международная конференция «Современные проблемы физики и высокие технологии». Томск, 2003; Х Международный семинар «Дислокационная структура и механические свойства металлов и сплавов – «ДСМСМ»-2005», Екатеринбург, 2005; XVI Международная конференция «Физика прочности и пластичности материалов». Самара, 2006; Международная конференция «Ti-2006 в СНГ». Суздаль, 2006; 6th International Conference on Modifications of Materials with Particle Beams and Plasma Flows. Tomsk, 2002; 7th International Conference on Modifications of Materials with Particle Beams and Plasma Flows. Tomsk, 2004; Международная конференция по физической мезомеханике, компьютерному конструированию и разработке новых материалов. Томск, 2004; International Conference on Modifications of Properties of Surface Layers of Non-Semiconducting Materials Using Particle Beams. Feodosiya, 2001; 13th International Symposium on High Current Electronics and the 7th International Conference on Modification of Materials with Particle Beams and Plasma Flows. Томск, 2004; VIII Международная школа-семинар «Эволюция дефектных структур в конденсированных средах». Барнаул, 2005; Всесоюзный семинар по смачиваемости и адгезии расплавов и пайке неметаллических материалов. Николаев, 1975; IV Всесоюзная конференция по композиционным материалам. Москва, 1978; Семинар по механике композитов с металлической матрицей. Черноголовка, 1978; VIII Всесоюзная конференция по поверхностным являниям в расплавах и твердых фазах. Киржач, 1980; Всесоюзная конференция «Применение аппаратов порошковой технологии и процессов термосинтеза в народном хозяйстве». Томск, 1987; Первая конференция «Материалы Сибири». Новосибирск, 1995; Научно-практическая конференция «Тюменская нефть – вчера и сегодня». Тюмень, 1997; V Russian-Chinese international symposium “Advanced Materials and Processes”, Baikalsk, Russia. 1999;

Публикации. Основное содержание диссертации отражено в 72 печатных работах, опубликованных в научных и научно-технических журналах, тематических сборниках и трудах конференций, в числе которых 4 коллективных монографии, 8 авторских свидетельств и 4 патента РФ на изобретения. В автореферате приведены основные публикации по теме диссертации.

Личный вклад автора в работу. Все изложенные в диссертации результаты исследований получены при непосредственном участии автора. Автору принадлежат идеи в определении цели, анализе и интерпретации результатов, формулировке основных положений и выводов. Большинство экспериментальных исследований выполнено лично автором. Под его руководством и при непосредственном участии осуществлялась разработка и изготовление экспериментального оборудования, отработка методик и технологических процессов.

Структура и объём диссертации. Диссертация состоит из введения, четырех разделов, приложений, выводов, списка цитируемой литературы, включающей 262 наименования. Диссертация содержит 288 страниц, в том числе 104 рисунка, 12 таблиц.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность решаемой проблемы; сформулированы цель, задачи исследования и основные положения, выносимые на защиту; показана научная новизна и практическая значимость полученных результатов; даны сведения об объектах исследований, структуре и объеме диссертации, публикациях; определен личный вклад автора; указаны конференции и семинары, на которых были доложены основные результаты работы.

В разделе I проведен анализ литературных данных об особенностях микроструктуры и деформационного поведения ультрамелкозернистых материалов и сплавов, полученных методами интенсивной пластической деформации. Рассмотрены имеющиеся к настоящему времени представления о развитии микропластической деформации в поликристаллических металлах и сплавах при нагружении. Обсуждены вопросы методик определения деформационного поведения материалов в области микропластической деформации при квазистатическом и циклическом нагружении. Обоснован выбор титана технической чистоты в качестве материала для исследований. Для выяснения влияния ультрамелкозернистой структуры титана на закономерности деформационного поведения в области микропластической деформации титана при различных видах нагружения исследования проводили в сравнении с крупнозернистым титаном.

Ультрамелкозернистая структура в титане технической чистоты была сформирована методами равноканального углового прессования и разностороннего прессования при температурах 620÷720 К. Проведенная с использованием просвечивающей электронной микроскопии аттестация микроструктуры титана показала, что в зависимости от технологических режимов после интенсивной пластической деформации формируется структура с разным средним размером зерен (рис. 1).

В зернах с размером менее 100 нм практически отсутствуют дислокационная субструктура. В зернах с размером 100÷500 нм имеется сетчатая дислокационная субструктура со скалярной плотностью дислокаций до 41010 см-2, что на порядок выше по сравнению с крупнозернистым материалом. В более крупных зернах (около 1 мкм) плотность дислокаций такая же, как и в рекристаллизованном состоянии, что позволяет предположить возможность динамической рекристаллизации в процессе интенсивной пластической деформации. Доля


большеугловых границ, определенная по горизонтальным разориентировкам, составляет 50%. Большинство границ зерен имеют размытый контраст, характеризующий их неравновесность. Особенностью микроструктуры титана является наличие ультрадисперсных метастабильных выделений фазы типа Ti2C размером 10-20 нм.

Исследования закономерностей деформационного поведения в области микропластической деформации при квазистатическом нагружении титана ВТ1-0 в крупнозернистом и ультрамелкозернистом состояниях показали, что характер зависимостей напряжения течения от величины микропластической деформации качественно одинаков для обоих состояний (рис.2). На диаграммах нагружения наблюдаются две стадии: линейная, которая в соответствии с моделью микропластической деформации обусловлена пластической деформацией в отдельных, не контактирующих между собой зернах на поверхности материала, и параболическая, связанная с кооперативной пластической деформацией зерен. В то же время сопротивление микродеформации для ультрамелкозернистого титана значительно повысилось по сравнению с крупнозернистым состоянием.

Напряжение τ (макроскопический предел упругости) перехода от первой ко второй стадии микропластической деформации для ультрамелкозернистого титана почти в 2 раза больше, чем для крупнозернистого.









Эффект повышения сопротивления микропластической деформации от формирования ультрамелкозернистой структуры для титана с заданным размером зерен не зависит от содержания примесей внедрения. (рис. 3).

Сформированная интенсивной пластической деформацией при повышенных температурах ультрамелкозернистая структура титана обладает достаточно высокой термостабильностью: при изотермических отжигах вплоть до температур, соответствующих температурам, при которых проводили интенсивную пластическую деформацию, микроструктура и сопротивление микропластической деформации при нагружении практически не изменяются. Отжиги при более высоких температурах приводят к развитию рекристаллизационных процессов, увеличению среднего размера зерен и снижению напряжения течения.

Установлено что дополнительное уменьшение среднего размера зерен (до 100÷200 нм) можно получить путем прокатки ультрамелкозернистого титана на высокие степени деформации при комнатной температуре без промежуточных отжигов (рис. 4). При этом возрастает степень несовершенства структуры границ зерен.

Прокатка ультрамелкозернистого титана привела к снижению макроскопического предела упругости (рис. 5, кривая 4). Однако на второй стадии микропластической деформации заметно вырос коэффициент деформационного упрочнения по сравнению с непрокатанным материалом. Кривая микродеформации для прокатанного крупнозернистого титана (рис. 5, кривая 3) оказалась подобна кривой для прокатанного ультрамелкозернистого титана.

Последующие дорекристаллизационные отжиги прокатанных образцов в интервале температур 573÷673 К приводят к тому, что как для крупнозернистого, так и для ультрамелкозернистого титана возрастает макроскопический предел упругости и напряжения течения (рис. 5, кривая 5).


Анализ зависимостей от среднего размера зерен предела текучести σ0,2 при растяжении и напряжения течения в области микропластической деформации σ0,02 при квазистатическом изгибе титана ВТ1-0 после дорекристаллизационных отжигов показал, что они подчиняются уравнению Холла-Петча (рис. 6). Отклонения наблюдаются только для прокатанного ультрамелкозернистого титана, не подвергнутого дорекристаллизационному отжигу. Причем значения предела текучести для этого состояния значительно выше по сравнению с отожженным материалом, а напряжения течения в области микропластической деформации существенно ниже.

При циклическом нагружении образцов титана ВТ1-0 в крупнозернистом и ультрамелкозернистом состояниях зависимости величины микропластической деформации от числа циклов также оказались подобными (рис.7). Остаточная деформация с ростом числа циклов накапливается по логарифмическому закону, который нарушается только перед разрушением. Сопротивление микропластической деформации при циклическом нагружении гораздо выше для ультрамелкозернистого титана. Разрушение ультрамелкозернистого и крупнозернистого титана происходило только при максимальных напряжениях цикла выше макроскопического предела упругости.

Величина ограниченного предела выносливости на базе 106 циклов оказалась максимальной для прокатанного ультрамелкозернистого титана (таблица 1). Зависимость ограниченного предела выносливости от размера зерен подчиняется соотношению Холла-Петча, если для прокатанного ультрамелкозернистого титана взять значения предела выносливости после дорекристаллизационного отжига. Для неотожженного прокатанного ультрамелкозернистого титана значения предела выносливости выше.

Подобными оказались и зависимости накопления микропластической деформации при ползучести при комнатной температуре для крупнозернистого и ультрамелкозернистого титана, однако так же, как и при квазистатическом и циклическом нагружении, сопротивление микроползучести выше для ультрамелкозернистого состояния (рис. 8). Из приведенных зависимостей накопления микропластической деформации при ползучести и при квазистатическом нагружении следует, что как только напряжение превышает макроскопический предел упругости, так резко ускоряются процессы ползучести.

Таблица 1.Ограниченный предел выносливости титана ВТ1-0 после термомеханических обработок

Состояние

Обработка

Размер зерна d, мкм

Ограниченный предел

выносливости σ0, МПа

Крупнозернистый

исходный

400

300

исходный

10

350

прокат 88%

-

610

прокат 88% + отжиг 623 К, 1 час

-

600

Ультрамелкозернистый

исходный

0,35

520

прокат 88%

0,18

650

прокат 88% + отжиг 623 К, 1 час

0,18

610




В заключении раздела на основании полного подобия закономерностей развития микропластической деформации у крупнозернистого и ультрамелкозернистого титана при различных видах нагружения, анализа влияния термомеханических обработок и условий выполнения соотношения Холла-Петча сделан вывод о применимости развитой ранее модели микропластической деформации для титана с объёмной ультрамелкозернистой структурой.

Микропластическая деформация осуществляется за счёт генерации и движения свежих дислокаций. Повышение сопротивления микропластической деформации при формировании ультрамелкозернистой структуры обусловлено снижением эффективности концентраторов напряжений, обуславливающих переход к кооперативной пластической деформации зерен. При напряжении, превышающем величину макроскопического предела упругости, деформационные процессы резко интенсифицируются, и в этом смысле макроскопический предел упругости является критической характеристикой. Зная величину макроскопического предела упругости при квазистатическом нагружении, можно прогнозировать уровень безопасных рабочих напряжений для работы материала в условиях циклического нагружения и ползучести.