Конспект лекций 2010 г. Содержание 1 Средства измерений технологических параметров 4 1Средства измерения давления 12
Вид материала | Конспект |
СодержаниеРасходомеры с напорными усилителями. Расходомеры переменного уровня. |
- 1. Средства измерений. Классификация средств измерений, требования к ним. Измерительные, 1405.11kb.
- Конспект лекций 2010 г. Батычко Вл. Т. Муниципальное право. Конспект лекций. 2010, 2365.6kb.
- Рабочей программы дисциплины методы и средства измерений в телекоммуникационных системах, 29.58kb.
- Конспект лекций 2010 г. Батычко В. Т. Уголовное право. Общая часть. Конспект лекций., 3144.81kb.
- Общие вопросы измерений, 218.32kb.
- Программа по оказанию информационно-консультационных услуг: «Эталонные и рабочие средства, 110.06kb.
- Инструкция Приборы для измерений климатических параметров «Метео-10» Методика поверки, 92.72kb.
- Цена дипломной работы с чертежом 500 рублей содержание, 48.91kb.
- Зволяет производить измерения давления в топливной системе почти на всех автомобилях, 517.38kb.
- Эталонная установка для комплексного измерения акустических параметров в конденсированных, 80.86kb.
Расходомеры с напорными усилителями.
Расходомеры с напорным усилителем имеют преобразователь расхода, в котором сочетаются напорное и сужающее устройство. Перепад давления создается в результате как местного перехода кинетической энергии потока, та и частичного перехода потенциальной энергии в кинетическую.
Внутри небольшой трубки Вентури рисунок 1.38 помещается вторая меньшая трубка Вентури, у которой входное или выходное отверстие совпадает с горлом первой трубки.

Рисунок 1.38 - Двухступенчатая трубка Пито – Вентури
Давление р2 отбирают в самой узкой части второй трубки, а давление р1 – из отверстия, направленного навстречу потоку. Коэффициент усиления k данного преобразователя можно немного изменять, перемещая кольцо, имеющееся снаружи большей трубки у ее выходного конца.
Напорные усилители применяют преимущественно для изменения расхода в трубах большого диаметра.
Ударно – струйные расходомеры.
Ударно – струйные расходомеры, предназначенные для измерения малых расходов жидкостей м газов, предложены и разработаны Левиным. Они основаны на измерении перепада давления, возникающего в процессе удара струи о твердое тело непосредственно или через слой измеряемого вещества. Давление удара ру зависит от скорости υ, плотности ρ вытекающей жидкости и определяется уравнением
ру = ρυ2 (1 - cos α)
где α – угол между направлением движения жидкости до и после удара.
Обычно α = π/2, тогда ру = ρυ2, в два раза больше динамического давления потока. Так как υ = q0/f,
где q0 – объемный расход;
f – площадь струи, то ру = ρq02/ f2.
На рисунке 1.39 изображена схема ударно – струйного расходомера.

Рисунок 1.39 - Схема ударно – струйного расходомера
Жидкость вытекает из сопла 1, ударяясь о перегородку 2, имеющую центральное отверстие, через которое давление удара передается жидкости, заполняющей сильфон 3, и создает усилие, приложенное к его днищу. Внутри сильфона действует ударное давление плюс статическое давление измеряемого вещества рс, снаружи сильфона – только давление рс. Перемещение дна сильфона, нагруженного измерительной пружиной 4, вызывает перемещение плунжера 5 внутри диамагнитной трубки, снаружи которой находится катушка 6 индуктивной или дифференциальной – трансформаторной передачи
-
Расходомеры переменного уровня.
Принцип действия расходомеров переменного уровня основан на зависимости высоты уровня жидкости в сосуде от расхода непрерывно поступающей и вытекающей из сосуда жидкости. Вытекание жидкости из сосуда происходит через отверстия в дне или боковой стенке. Сосуды для приема жидкости выполняют цилиндрическими или прямоугольными.
В расходомерах с полностью затопленными отверстиями истечения последние имеют круглую форму и располагаются либо в дне, либо в боковой стенке. В расходомерах с частично заполненными отверстиями истечения последние выполнены в виде щели в боковой стенке. Расходомеры переменного уровня могут быть использованы для измерения расхода газонасыщенных нефтей, сточных вод и загрязненных жидкостей, в том числе содержащих взвеси.
В расходомере переменного уровня с затопленным отверстием рисунок 1.40, (а) измеряемый поток поступает в сосуд 3 через патрубок 4.

Рисунок 1.40 Схемы расходомеров переменного уровня
На дне сосуда в качестве отверстия истечения обычно устанавливается нормальная диафрагма 1. для предохранения диафрагмы от загрязнения и успокоения потока жидкости внутри сосуда установлены перегородки 5. уровень в сосуде определяется по водомерному стеклу 2.
Расходомеры с щелевым отверстием истечения рисунок 1.40,б состоит из сосуда 1, в который через патрубок 2 поступает измеряемая жидкость. Внутри сосуда размещена перегородка, снабженная щитом с профилированной сливной щелью 5, через которую происходит истечение жидкости из левой части сосуда в правую с выходным патрубком 8. для измерения уровня Н над нижней кромкой щели в защитном чехле установлена пьезометрическая трубка 3, через которую непрерывно продувается воздух, предварительно прошедший систему подготовки газа 6. давление воздуха в трубке 3, измеряемое дифманометром 7, служит мерой уровня Н. Зависимость объемного расхода Q жидкости от уровня Н определяется формой отверстия истечения 1.40,в. Расход dQ через элементарную площадку шириной х и высотой dy для щели произвольной формы запишем в виде:

Полный расход составит

Чтобы проинтегрировать уравнения (6), необходимо определить зависимость между х и у. для этого задаются либо формой щели, либо желаемой зависимостью между Q и Н.
Зададимся линейной зависимостью
Q = kH, (7)
где k – коэффициент, определяемый из условия k =Qmax/Hmax. Подставляя значение Q из уравнения (7) в (6), имеем

Желаемая зависимость (7) оказывается возможной при условии:

где с – постоянная величина;

Подставляя значение х из (8) в (6) и интегрируя его, получим

из выражения (9) следует, что у щелевых расходомеров для измерения объемного расхода необходимо измерять уровень жидкости Н, а для получения массового расхода – давление гидростатического столба
