1. Понятие информации. Виды информации. Роль информации в жи­вой природе и в жизни людей

Вид материалаДокументы

Содержание


Билет 1 Что такое "информация"
Информация в физике.
Информация в биологии.
Информация в кибернетике.
Социально значимые свойства информации.
Информационные процессы
Информационный процесс
Количество информации как мера уменьшения неопределенности(вероятностный подход)
Алфавитный подход
Единицы измерения информации
Кодирование информации
Двоичное кодирование информации
Представление числовой информации с помощью систем счисления
Римская непозиционная система счисления.
Позиционные системы счисления.
Двоичное кодирование текстовой информации
Для кодирования одного символа требуется 1 байт информации.
Обратите внимание!
Кодирование информации в компьютере
Кодирование графической информации
...
Полное содержание
Подобный материал:
  1   2   3   4   5   6   7

Билет № 1

1. Понятие информации. Виды информации. Роль информации в жи­вой природе и в жизни людей. Язык как способ представления информа­ции: естественные и формальные языки. Основные информационные про­цессы: хранение, передача и обработка информации,

2. Построение алгоритма (основные алгоритмические структуры) и его реализация в среде учебного исполнителя. Демонстрация полученного ал­горитма в среде учебного исполнителя.

Билет № 2

1. Измерение информации: содержательный и алфавитный подходы. Единицы измерений информации.

2. Создание и редактирование текстового документа (исправление ошибок, удаление или вставка текстовых фрагментов), в том числе исполь­зование элементов форматирования текста (установка параметров шрифта и абзаца, внедрение заданных объектов в текст).

Билет 3

1, Дискретное представление информации: двоичные числа; двоич­ное кодирование текста в памяти компьютера. Информационный объем текста.

2, Создание и обработка графических изображений средствами гра­фического редактора. Ввод изображения через сканер или с цифрового фотоаппарата. Простейшая обработка цифрового изображения.

Билет № 4

1. Дискретное представление информации: кодирование цветного изображения в компьютере (растровый подход). Представление и обработ­ка звука и видеоизображения. Понятие мультимедиа.

2. Работа с файловой системой, с графическим интерфейсом (выпол­нение стандартных операций с файлами: создание, копирование, переиме­нование, удаление). Организация индивидуального информационного про­странства (настройка элементов рабочего стола, проверка на вирусы, ис­пользование архиватора).

Билет № 5

1. Процесс передачи информации, источник и приемник информации, канал передачи информации. Скорость передачи информации.

2. Создание мультимедийной презентации на основе шаблонов. Выбор типа разметки слайда, применение шаблона оформления, цветовых схем и эффектов анимации. Показ презентации с использованием автоматичес­кой смены слайдов.

Билет № 6

1, Понятие алгоритма. Исполнитель алгоритма. Система команд испол­нителя (на примере учебного исполнителя). Свойства алгоритма. Способы записи алгоритмов; блок-схемы.

2. Создание базы данных. Определение структуры базы данных: коли­чество и типы полей, заполнение таблиц (или использование готовых), Организация поиска информации в базах данных. Создание запросов раз­ной сложности.

Билет № 7

1. Основные алгоритмические структуры; следование, ветвление, цикл; изображение на блок-схемах. Разбиение задачи на подзадачи. Вспомога­тельные алгоритмы,

2. Работа с электронной таблицей. Создание таблицы в соответствии с условием задачи, использование функций. Построение диаграмм и гра­фиков по табличным данным.

Билет № 8

1. Величины: константы, переменные, типы величин. Присваивание, ввод и вывод величин. Линейные алгоритмы работы с величинами.

2. Поиск информации в Интернете с применением языка запросов.

Билет № 9

1. Логические величины, операции, выражения. Логические выражения в качестве условий в ветвящихся и циклических алгоритмах.

2. Форматирование текстового документа. Установка параметров стра­ницы, вставка номеров страниц, колонтитулов, гиперссылок, изменение параметров шрифта и абзаца.

Билет № 10

1. Представление о программировании: язык программирования (на примере одного из языков высокого уровня); примеры несложных программ с линейной, ветвящейся и циклической структурой.

2. Работа с архиваторами и антивирусными программами. Создание многотомного архива, использование антивирусных программ.

Билет № 11

1. Основные компоненты компьютера, их функциональное назначение и принципы работы. Программный принцип работы компьютера.

2. Построение алгоритма для обработки величин с реализацией на языке программирования (ветвление, цикл). Отладка программы и получе­ние результатов.

Билет № 12

1. Программное обеспечение компьютера, состав и структура. Назначе­ние операционной системы. Командное взаимодействие пользователя с компьютером. Графический пользовательский интерфейс.

2. Создание мультимедийной презентации на основе шаблонов. Выбор типа разметки слайда, применение шаблона оформления, цветовых схем и эффектов анимации. Демонстрация слайдов с использованием управля­ющих кнопок,

Билет № 13

1. Понятие файла и файловой системы организации данных (папка, иерархическая структура, имя файла, тип файла, параметры файла). Основ­ные операции с файлами и папками, выполняемые пользователем. Понятие об архивировании и защите от вирусов,

2. Организация поиска информации в готовой базе данных с приме­нением составного логического выражения.

Билет № 14

1, Информационные ресурсы общества. Основы информационной безопасности, этики и права.

2. Работа с электронной таблицей. Проведение вычислительного экс­перимента в среде электронной таблицы. Решение задачи с использовани­ем электронной таблицы для изменяющихся начальных данных.

Билет № 15

1. Технологии работы с текстовыми документами. Текстовые редакторы и процессоры: назначение и возможности. Основные структурные элементы текстового документа. Шрифты, стили, форматы. Основные приемы редак­тирования документа. Встраиваемые объекты. Понятие гипертекста.

2. Построение алгоритма и реализация на изучаемом языке програм­мирования или в среде учебного исполнителя. Демонстрация полученного алгоритма в среде учебного исполнителя или отладка программы и полу­чение результатов.

Билет № 16

1. Технологии работы с графической информацией. Растровая и век­торная графика. Аппаратные средства ввода и вывода графических изоб­ражений. Прикладные программы работы с графикой. Графический редак­тор. Основные инструменты и режимы работы.

2. Решение задачи по теме "Системы счисления» на изучаемом языке программирования или с использованием стандартной программы «Каль­кулятор».

Билет № 17

1. Табличные базы данных (БД): основные понятия (поле, запись, пер­вичный ключ записи); типы данных. Системы управления базами данных и принципы работы с ними. Поиск, удаление и сортировка данных в БД. Условия поиска (логические выражения); порядок и ключи сортировки.

2. Построение алгоритма для обработки величин с реализацией на языке программирования (ветвление, цикл, линейный массив или вспомо­гательные алгоритмы). Отладка программы, получение результатов.

Билет № 18

1. Технология обработки информации в электронных таблицах (ЭТ), Структура электронной таблицы. Типы данных: числа, формулы, текст. Пра­вила записи формул. Основные встроенные функции. Абсолютные и отно­сительные ссылки. Графическое представление данных.

2. Построение алгоритма для управления учебным исполнителем (ос­новные алгоритмические структуры). Демонстрация полученного алгоритма в среде учебного исполнителя.

Билет 19

1. Основные принципы организации и функционирования компьютер­ных сетей. Интернет. Информационные ресурсы и сервисы компьютерных сетей: Всемирная паутина, файловые архивы, интерактивное общение. Назначение и возможности электронной почты. Поиск информации в Ин­тернете.

2. Обработка цифрового изображения в графическом редакторе, Например, устранение дефектов, ретуширование и тоновая коррекция фо­тографии.

Билет № 20

1. Понятие модели. Информационная модель. Виды информационных моделей (на примерах). Реализация информационных моделей на компью­тере. Пример применения электронной таблицы в качестве инструмента математического моделирования.

2. Построение алгоритма для обработки величин с реализацией на языке программирования (линейный массив или вспомогательные алго­ритмы).

Билет 1

Что такое "информация"

Слово "информация" происходит от латинского слова informatio, что в переводе означает сведение, разъяснение, ознакомление. Понятие «информация» является базовым в курсе информатики, невозможно дать его определение через другие, более «простые» понятия. В геометрии, например, невозможно выразить содержание базовых понятий «точка», «луч», «плоскость» через более простые понятия. Содержание основных, базовых понятий в любой науке должно быть пояснено на примерах или выявлено путем их сопоставления с содержанием других понятий.

В случае с понятием «информация» проблема его определения еще более сложная, так как оно является общенаучным понятием. Данное понятие используется в различных науках (информатике, кибернетике, биологии, физике и др.), при этом в каждой науке понятие «информация» связано с различными системами понятий.

Информация в физике. В физике мерой беспорядка, хаоса для термодинамической системы является энтропия системы, тогда как информация (антиэнтропия) является мерой упорядоченности и сложности системы. По мере увеличения сложности системы величина энтропии уменьшается, и величина информации увеличивается. Процесс увеличения информации характерен для открытых, обменивающихся веществом и энергией с окружающей средой, саморазвивающихся систем живой природы (белковых молекул, организмов, популяций животных и так далее).

Таким образом, в физике информация рассматривается как антиэнтропия или энтропия с обратным знаком.

Информация в биологии. В биологии, которая изучает живую природу, понятие «информация» связывается с целесообразным поведением живых организмов. Такое поведение строится на основе получения и использования организмом информации об окружающей среде.

Понятие «информация» в биологии используется также в связи с исследованиями механизмов наследственности. Генетическая информация передается по наследству и хранится во всех клетках живых организмов. Гены представляют собой сложные молекулярные структуры, содержащие информацию о строении живых организмов. Последнее обстоятельство позволило проводить научные эксперименты по клонированию, то есть созданию точных копий организмов из одной клетки.

Информация в кибернетике. В кибернетике (науке об управлении) понятие «информация» связано с процессами управления в сложных системах (живых организмах или технических устройствах). Жизнедеятельность любого организма или нормальное функционирование технического устройства зависит от процессов управления, благодаря которым поддерживаются в необходимых пределах значения их параметров. Процессы управления включают в себя получение, хранение, преобразование и передачу информации.

Социально значимые свойства информации. Человек - существо социальное, для общения с другими людьми он должен обмениваться с ними информацией, причем обмен информацией всегда производится на определенном языке — русском, английском и так далее. Участники дискуссии должны владеть тем языком, на котором ведется общение, тогда информация будет понятной всем участникам обмена информацией.

Информация должна быть полезной, тогда дискуссия приобретает практическую ценность. Бесполезная информация создает информационный шум, который затрудняет восприятие полезной информации. Примерами передачи и получения бесполезной информации могут служить некоторые конференции и чаты в Интернете.

Широко известен термин «средства массовой информации» (газеты, радио, телевидение), которые доводят информацию до каждого члена общества. Такая информация должна быть достоверной и актуальной. Недостоверная информация вводит членов общества в заблуждение и может быть причиной возникновения социальных потрясений. Неактуальная информация бесполезна и поэтому никто, кроме историков, не читает прошлогодних газет.

Для того чтобы человек мог правильно ориентироваться в окружающем мире, информация должна быть полной и точной. Задача получения полной и точной информации стоит перед наукой. Овладение научными знаниями в процессе обучения позволяют человеку получить полную и точную информацию о природе, обществе и технике.

Классификация информации

По способу передачи и восприятия:
  • визуальная
  • аудиальная
  • тактильная (ощущения)
  • органолентическая (запах и вкус)
  • машинно-выдаваемая и воспринимаемая средствами ВТ

По отношению к окружающей среде:
  • входная
  • выходная
  • внутренняя

По отношению к исходному результату:
  • исходная
  • промежуточная
  • результирующая

Язык как знаковая система

Для обмена информацией с другими людьми человек использует естественные языки (русский, английский, китайский и др.), то есть информация представляется с помощью естественных языков. В основе языка лежит алфавит, то есть набор символов (знаков), которые человек различает по их начертанию. В основе русского языка лежит кириллица, содержащая 33 знака, английский язык использует латиницу (26 знаков), китайский язык использует алфавит из десятков тысяч знаков (иероглифов).

Последовательности символов алфавита в соответствии с правилами грамматики образуют основные объекты языка — слова. Правила, согласно которым образуются предложения из слов данного языка, называются синтаксисом. Необходимо отметить, что в естественных языках грамматика и синтаксис языка формулируются с помощью большого количества правил, из которых существуют исключения, так как такие правила складывались исторически.

Наряду с естественными языками были разработаны формальные языки (системы счисления, язык алгебры, языки программирования и др.). Основное отличие формальных языков от естественных состоит в наличии строгих правил грамматики и синтаксиса.

Например, системы счисления можно рассматривать как формальные языки, имеющие алфавит (цифры) и позволяющие не только именовать и записывать объекты (числа), но и выполнять над ними арифметические операции по строго определенным правилам.

Некоторые языки используют в качестве знаков не буквы и цифры, а другие символы, например химические формулы, ноты, изображения элементов электрических или логических схем, дорожные знаки, точки и тире (код азбуки Морзе) и др.

Знаки могут -иметь различную физическую природу. Например, для представления информации с использованием языка в письменной форме используются знаки, которые являются изображениями на бумаге или других носителях, в устной речи в качестве знаков языка используются различные звуки (фонемы), а при обработке текста на компьютере знаки представляются в форме последовательностей электрических импульсов (компьютерных кодов).

Информационные процессы

Информация не существует сама по себе, она проявляется в информационных процессах.

Информационные процессы всегда протекают в каких-либо системах (биологических, социальных, технических, социотехнических).

Информационный процесс - совокупность последовательных действий (операций), производимых над информацией (в виде данных, сведений, фактов, идей, гипотез, теорий и пр.) для получения какого-либо результата (достижения цели).

Сбор информации

Состоит из процессов поиска и отбора информации.
Поиск информации всегда сопровождается ее отбором.

Методы происка информации
  • непосредственное наблюдение;
  • общение со специалистами по интересующему вас вопросу;
  • чтение соответствующей литературы;
  • просмотр видео-, телепрограмм;
  • прослушивание радиопередач и аудиокассет;
    работа в библиотеках, архивах;
  • запрос к информационным системам, базам и банкам компьютерных данных; другие методы.

Хранение информации

Хранение процесс распространения информации во времени.
Хранилище информации зависит от ее носителя

Примеры (носитель-хранилище):
  • Книга-библиотека
  • Картина-музей
  • Фотография-альбом

Виды носителей:
  • Бумажные
  • Электронные

Передача

Передача - это процесс распространения информации во времени.


Схема процесса передачи информации

Обработка

Обработка - это процесс изменения формы представления информации или её содержания.
Обработка - это закономерный, целенаправленный, планомерный процесс.

Процессы изменения формы информации:
  • кодирования
  • декодирования

Проходят параллельно
  • сбору
  • передаче информации.

Процесс изменения содержания информации:
  • численные расчеты
  • редактирование
  • упорядочивание
  • обобщение
  • систематизация и т.

Билет 2


1. Измерение информации: содержательный и алфавитный подходы. Единицы измерения информации.


 

Определить понятие "количество информации" довольно сложно. В решении этой проблемы существует два основных подхода. Исторически они возникли почти одновременно. В конце 1940 г. один из основоположников кибирнетиеи американский математик Клож Шенон развил вероятностный подход к измерению количества информации, а работы по созданию ЭВМ привели к "объемному подходу".

Количество информации как мера уменьшения неопределенности
(вероятностный подход)


С точки зрения отдельного человека, ценность информации определяется тем, насколько она проясняет для него какой-либо вопрос, то есть уменьшает неопределенность ситуации. При этом количество одной и той же информации может быть оценено различными людьми по-разному. Для объективного измерения количества информации необходимо формализовать задачу.

Будем считать события равновозможными, если мы не располагаем заранее никакой информацией (статистическими данными, логическими умозаключениями и т.д.), о том, что шансы одного из событий выше или ниже, чем шансы любого другого. При этом имеется в виду, что в результате опыта обязательно наступит какое-либо событие и притом только одно.

Так, например, при подбрасывании монеты выпадение орла или решки можно считать равновозможными событиями, предполагая монету идеальной, то есть исключив из рассмотрения возможность других исходов ("зависла в воздухе", "встала на ребро"), а также влияние на исход опыта чеканки на сторонах монеты, отклонения формы реальной монеты от правильной и т. д.

Чем больше равновозможных событий, тем больше неопределенность ситуации. Минимальный размер сообщения о том, что произошло одно из двух равновозможных событий, равен одному биту. Информацию о том, что произошло первое событие, можно закодировать в двоичном алфавите нулем, а о том, что произошло второе событие – единицей.

Для уменьшения неопределенности в два раза (вместо двух возможных событий – одно реально произошедшее) требуется один бит информации. Иначе говоря, сообщение, уменьшающее неопределенность ситуации в два раза, несет один бит информации. Если его длина, подсчитанная с использованием алфавитного подхода, больше, значит сообщение несет избыточную, с точки зрения уменьшения неопределенности, информацию.

Пример. С точки зрения уменьшения неопределенности, сообщение о исходе опыта бросания идеальной монеты (два равновозможных события) несет один бит информации.

Можно рассчитать длину сообщения в двоичном алфавите, необходимую для передачи информации. Для уменьшения неопределенности ситуации в 2n раз необходимо n бит информации.

Пример. С точки зрения уменьшения неопределенности, сообщение о исходе опыта бросания двух идеальных монет (четыре равновозможных события: орел-решка; решка-орел; орел-орел; решка-решка) несет два бита информации. Действительно, 2n в данном случае равняется четырем, следовательно n = 2.

Задача нахождения n по известному значению k = 2n решается нахождением логарифма числа k по основанию 2, поэтому, для того, чтобы закодировать информацию, уменьшающую неопределенность в k раз, необходимо log2k бит информации. Приведем таблицу некоторых двоичных логарифмов, являющихся целыми числами. n log2k


Пример. С точки зрения уменьшения неопределенности, сообщение о исходе опыта бросания точечного объекта на шахматную доску (равновозможные события - попадания в одну из 64 клеток) несет 6 бит информации. Действительно, k в данном случае равняется 64, log264 = 6. Минимальная длина двоичного сообщения также будет равна 6. Подробнее: номер клетки доски по вертикали можно закодировать целым числом от 0 до 7. Для этого требуется 3 двоичных разряда (см. Системы счисления). Еще 3 разряда нужны для того, чтобы закодировать номер клетки доски по горизонтали, 3+3=6. Можно также просто пронумеровать все клетки числами от 0 до 63. Для этого опять-таки потребуется 6 разрядов.

Если используется алфавит, состоящий не из двух, а из 2p знаков, то каждый знак может нести информацию, уменьшающую неопределенность ситуации в 2p раз. Таким образом, сообщение из m знаков позволяет уменьшить неопределенность в (2p)m = 2pm раз, то есть его информационный объем равен m·p бит, что согласуется с результатом, полученным при использовании алфавитного подхода.

Пример. Пусть для кодирования сообщения о попадании точечного объекта на клетку шахматной доски используется алфавит из 8 символов (2p = 8, следовательно p = 3). Сообщение уменьшает неопределенность в 64 раза, следовательно 2pm = 23m = 64, отсюда 3m = log264 = 6; m = 2, то есть для кодирования информации попадании точечного объекта на клетку шахматной доски потребуется сообщение из двух знаков восьмисимвольного алфавита. Действительно, в первом знаке сообщения можно закодировать, например, информацию о горизонтали клетки, а во втором — о вертикали. В общепринятой шахматной нотации фактически используется указанный способ именования клеток, только для удобства чтения первый символ сообщения записывается как буква, а второй - как цифра. С математической точки зрения ничто не мешает обозначать клетки a1 и h8 как aa и hh или 11 и 88, используя только 8 символов.

Алфавитный подход

Если информация представлена в виде дискретного сообщения, то логично считать количеством информации его длину, то есть общее число знаков в сообщении. Но длина сообщения зависит не только от содержащейся в нем информации. На нее влияет мощность алфавита используемого языка. Чем меньше знаков в используемом алфавите, тем длиннее сообщение. Так, например, в алфавите азбуки Морзе всего три знака (точка, тире, пауза), поэтому для кодирования каждой русской или латинской буквы нужно использовать несколько знаков, и текст, закодированный по Морзе, будет намного длиннее, чем при обычной записи.

Пример: Сигнал SOS: 3 знака в латинском алфавите;

11 знаков в алфавите Морзе: ··· пауза – – – пауза ···.

Для упорядочивания измерений информационный объем сообщений принято измерять в битах. Один бит соответствует одному знаку двоичного алфавита. Итак, чтобы измерить длину сообщения, его нужно представить в двоичном виде и подсчитать количество двоичных знаков – битов. При этом совсем не обязательно уметь интерпретировать сообщения.

Пример: Пусть сообщение в двоичном алфавите выглядит следующим образом: 000100010001. Мы не знаем, какая информация была заложена в этом сообщении, но можем легко подсчитать его длину – 12 двоичных знаков, следовательно, его информационный объем равен 12-ти битам.

Такой способ измерения количества информации называется алфавитным подходом. При этом измеряется не содержание информации с точки зрения его новизны и полезности, а размер несущего информацию сообщения. Мы уже убедились, что при алфавитном подходе к определению количества информации одни и те же сведения, закодированные по-разному, будут иметь различный информационный объем. Сообщения одинаковой длины могут нести совершенно как совершенно бесполезные сведения, так и нужную информацию. Пример: Применяя алфавитный подход, получаем, что информационный объем слов “фыырпбьощ” и “компьютер” совершенно одинаков, а слов “ученик” и “учащийся” – различен.

Если алфавит содержит 2n знаков, то каждый из его знаков можно закодировать с помощью n знаков двоичного алфавита. Таким образом, объем информации, содержащейся в сообщении длиной m при использовании алфавита мощностью 2n, равен m·n бит.
Пример:

Найдем информационный объем слова SOS, записанного в компьютерной кодировке. При кодировании букв в компьютере используется либо алфавит ASCII (American Standard Code for Information Interchange — американский стандартный код обмена информацией), состоящий из 28=256 знаков, либо алфавит Unicode, мощность которого 216 = 65536. В слове SOS три буквы, следовательно, его информационный объем 3·8=24 или 3·16=48 бит, в зависимости от используемой кодировки.

Алфавитный подход удобен при подсчете количества информации, хранимого, передаваемого и обрабатываемого техническими устройствами. Действительно, устройствам нет дела до содержательной стороны сообщений. Компьютеры, принтеры, модемы работают не с самой информацией а с ее представлением в виде сообщений. Оценить информационные результаты их работы как полезные или бесполезные может только человек.

Единицы измерения информации

Для удобства, помимо бита используются более крупные единицы измерения количества информации. Вот соотношения между ними:



То, что отношения между единицами измерения кратны степеням 2, объясняется большим теоретическим и практическим значением двоичного кодирования в информатике.